Research on Pilots ’ Mental Workload Classification in Simulated Flight

Jinna Xue, Changyuan Wang
{"title":"Research on Pilots ’ Mental Workload Classification in Simulated Flight","authors":"Jinna Xue, Changyuan Wang","doi":"10.2478/ijanmc-2023-0048","DOIUrl":null,"url":null,"abstract":"Abstract The problem of human-computer interaction mental workload in flight driving has great reference value for the prevention of safety hazards in aviation driving. This paper analyzes and studies the classification method of mental workload in flight driving by designing different simulated flight experiment tasks. This study uses a combination of EEG signals and subjective evaluation, through the use of convolutional neural networks and long short-term memory network method of combining EEG signals for research and analysis. The accuracy of EEG signal classification is as high as 94.9 %. NASA-TLX evaluation results show that there is a positive correlation between task load difficulty and evaluation score. The results show that the combination of convolutional neural network and long short-term memory network is suitable for pilots ’ mental workload classification. This study has important practical significance for flight accidents caused by pilots ’ mental workload.","PeriodicalId":193299,"journal":{"name":"International Journal of Advanced Network, Monitoring and Controls","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Network, Monitoring and Controls","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijanmc-2023-0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The problem of human-computer interaction mental workload in flight driving has great reference value for the prevention of safety hazards in aviation driving. This paper analyzes and studies the classification method of mental workload in flight driving by designing different simulated flight experiment tasks. This study uses a combination of EEG signals and subjective evaluation, through the use of convolutional neural networks and long short-term memory network method of combining EEG signals for research and analysis. The accuracy of EEG signal classification is as high as 94.9 %. NASA-TLX evaluation results show that there is a positive correlation between task load difficulty and evaluation score. The results show that the combination of convolutional neural network and long short-term memory network is suitable for pilots ’ mental workload classification. This study has important practical significance for flight accidents caused by pilots ’ mental workload.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟飞行中飞行员心理负荷分类研究
飞行驾驶中人机交互心理负荷问题对预防航空驾驶安全隐患具有重要的参考价值。本文通过设计不同的模拟飞行实验任务,对飞行驾驶中心理负荷的分类方法进行了分析研究。本研究采用脑电信号与主观评价相结合的方法,通过使用卷积神经网络与长短期记忆网络相结合的方法对脑电信号进行研究和分析。该方法对脑电信号的分类准确率高达94.9%。NASA-TLX评价结果表明,任务负荷难度与评价得分呈正相关。结果表明,卷积神经网络与长短期记忆网络相结合适合于飞行员心理负荷分类。本研究对于飞行员精神负荷引起的飞行事故具有重要的现实意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Landing Control of Aircraft Based on Cognitive Load Theory and DDPG Research on Simulation Approximate Solution Strategy for Complex Kinematic Models Indoor Robot SLAM with Multi-Sensor Fusion Securing Operating Systems (OS): A Comprehensive Approach to Security with Best Practices and Techniques Lightweight Low-Altitude UAV Object Detection Based on Improved YOLOv5s
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1