Electric-field calculation and grading ring design for 750 kV AC composite insulator

Jintao Liao, Zongren Peng, Shiling Zhang
{"title":"Electric-field calculation and grading ring design for 750 kV AC composite insulator","authors":"Jintao Liao, Zongren Peng, Shiling Zhang","doi":"10.1109/ICSD.2013.6619713","DOIUrl":null,"url":null,"abstract":"The use of a grading ring is important to improve the E-Field conditions of composite insulators. With FEM, this paper used a static three dimensional model to calculate the potential and E-Field distribution of composite insulator on a cup-tower for 750 kV AC transmission lines. The influence of the configuration and parameters of the grading rings had been analyzed. The configuration of a large and a small grading ring at the conductor side and a medium grading ring at the tower side proved to be reasonable and the insulators in middle phase experienced higher E-Field intensity than that in side phase. The E-Field intensity of insulators and grading rings had been calculated by changing the dimensions and location of the large grading ring and finally appropriate parameters of the large grading ring were recommended. The results of checking calculation had verified that the optimized grading configuration can not only improve the E-Field conditions of the insulator, but also reduce the E-Field intensity of grading rings and end-fittings.","PeriodicalId":437475,"journal":{"name":"2013 IEEE International Conference on Solid Dielectrics (ICSD)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Solid Dielectrics (ICSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSD.2013.6619713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The use of a grading ring is important to improve the E-Field conditions of composite insulators. With FEM, this paper used a static three dimensional model to calculate the potential and E-Field distribution of composite insulator on a cup-tower for 750 kV AC transmission lines. The influence of the configuration and parameters of the grading rings had been analyzed. The configuration of a large and a small grading ring at the conductor side and a medium grading ring at the tower side proved to be reasonable and the insulators in middle phase experienced higher E-Field intensity than that in side phase. The E-Field intensity of insulators and grading rings had been calculated by changing the dimensions and location of the large grading ring and finally appropriate parameters of the large grading ring were recommended. The results of checking calculation had verified that the optimized grading configuration can not only improve the E-Field conditions of the insulator, but also reduce the E-Field intensity of grading rings and end-fittings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
750kv交流复合绝缘子的电场计算及分级环设计
分级环的使用对改善复合绝缘子的电场条件具有重要意义。采用有限元方法,建立了750kv交流输电线路杯塔复合绝缘子的静态三维模型,计算了杯塔复合绝缘子的电势和电场分布。分析了分级环的结构和参数对分级效果的影响。在导线侧设置大、小分级环,在塔侧设置中等分级环,中间相绝缘子的电场强度高于侧相绝缘子。通过改变大分级环的尺寸和位置,计算了绝缘子和分级环的电场强度,并给出了合适的大分级环参数。校核计算结果表明,优化后的分级结构不仅改善了绝缘子的电场条件,而且降低了分级环和端件的电场强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contribution to the study of the amorphous phase of polyethylene terephtalate (PET) by the differential scanning calorimerty (DSC) experiments Influence of the thickness and the nature of HVAC insulator model on the flashover voltage and the leakage current Damage processes of polyimide film caused by surface discharge A modified method of suppressing narrow-band interference using FFT power spectrum Depths of chemical impurity states in Polyethylene; The big picture from first principles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1