A hybrid intelligent intrusion detection system to recognize novel attacks

Dwen-Ren Tsai, Wen-Pin Tai, Chi-Fang Chang
{"title":"A hybrid intelligent intrusion detection system to recognize novel attacks","authors":"Dwen-Ren Tsai, Wen-Pin Tai, Chi-Fang Chang","doi":"10.1109/CCST.2003.1297598","DOIUrl":null,"url":null,"abstract":"We propose a hybrid intelligent intrusion detection system to recognize novel attacks. Current works in intrusion detection solve the anomaly detection and the misuse detection. The misuse detection cannot recognize the new types of intrusions; while the abnormal detection also suffers from the false alarms. The mechanism to detect new forms of attacks in the systems will be the most important issue for intrusion detection For this purpose, we apply the neural network approach to learn the attack definitions and the fuzzy inference approach to describe the relations of attack properties for recognition This study concentrates the focus on detecting distributed denial of service attacks to develop this system. Experiment results will verify the performance of the model.","PeriodicalId":344868,"journal":{"name":"IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. Proceedings.","volume":"322 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2003.1297598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We propose a hybrid intelligent intrusion detection system to recognize novel attacks. Current works in intrusion detection solve the anomaly detection and the misuse detection. The misuse detection cannot recognize the new types of intrusions; while the abnormal detection also suffers from the false alarms. The mechanism to detect new forms of attacks in the systems will be the most important issue for intrusion detection For this purpose, we apply the neural network approach to learn the attack definitions and the fuzzy inference approach to describe the relations of attack properties for recognition This study concentrates the focus on detecting distributed denial of service attacks to develop this system. Experiment results will verify the performance of the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于识别新型攻击的混合智能入侵检测系统
我们提出了一种混合智能入侵检测系统来识别新的攻击。目前的入侵检测工作主要集中在异常检测和误用检测两方面。误用检测不能识别新的入侵类型;而异常检测也存在误报的问题。系统中新形式攻击的检测机制将是入侵检测中最重要的问题,为此,我们采用神经网络方法学习攻击定义,模糊推理方法描述攻击属性之间的关系进行识别,研究重点是检测分布式拒绝服务攻击来开发该系统。实验结果将验证该模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proxy certificates-based digital fingerprinting scheme for mobile communication Efficient method for security image data compression Design of a computer-aided system for risk assessment on information systems Contingency planning: emergency preparedness for terrorist attacks Integration of trusted operating system from open source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1