Comparison of supervised classification algorithms combined with feature extraction and selection: Application to a turbo-generator rotor fault detection

A. Bacchus, M. Biet, L. Macaire, Y. Le Menach, A. Tounzi
{"title":"Comparison of supervised classification algorithms combined with feature extraction and selection: Application to a turbo-generator rotor fault detection","authors":"A. Bacchus, M. Biet, L. Macaire, Y. Le Menach, A. Tounzi","doi":"10.1109/DEMPED.2013.6645770","DOIUrl":null,"url":null,"abstract":"The goal of this paper consists in applying pattern recognition methods to turbo-generators. Previous works have shown that a monitor, thanks to pattern recognition, is practical on asynchronous machines. This procedure has rarely taken advantage of these methods for turbogenerator. The statistical model has been obtained from harmonics extracted from flux probes and from stator current and voltage. For this purpose, the main way is to build a learning matrix to predict the functional state of a new measurement. Finally, three classifiers have been compared: k Nearest Neighbors, Linear Discriminant Analysis and Support Vector Machines. The best classification result is obtained by Linear Discriminant Analysis combined with Factorial Discriminant Analysis achieving a score of 84.6%.","PeriodicalId":425644,"journal":{"name":"2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2013.6645770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The goal of this paper consists in applying pattern recognition methods to turbo-generators. Previous works have shown that a monitor, thanks to pattern recognition, is practical on asynchronous machines. This procedure has rarely taken advantage of these methods for turbogenerator. The statistical model has been obtained from harmonics extracted from flux probes and from stator current and voltage. For this purpose, the main way is to build a learning matrix to predict the functional state of a new measurement. Finally, three classifiers have been compared: k Nearest Neighbors, Linear Discriminant Analysis and Support Vector Machines. The best classification result is obtained by Linear Discriminant Analysis combined with Factorial Discriminant Analysis achieving a score of 84.6%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特征提取与选择相结合的监督分类算法比较:在汽轮发电机转子故障检测中的应用
本文的目的在于将模式识别方法应用于汽轮发电机组。先前的工作表明,由于模式识别,监视器在异步机器上是实用的。该程序很少利用这些方法对汽轮发电机。从磁通探头提取的谐波和定子电流、电压提取的谐波得到了统计模型。为此,主要的方法是建立一个学习矩阵来预测新测量的功能状态。最后,比较了三种分类器:k近邻、线性判别分析和支持向量机。线性判别分析结合析因判别分析的分类效果最好,分类分值为84.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-cost IC less self oscillating boost PFC converter Sensorless speed estimation and diagnosis of induction motors based on purified space vectors Bearing faults detection in induction machines based on statistical processing of the stray fluxes measurements 2-Pole turbo-generator eccentricity diagnosis by split-phase current signature analysis An accurate and fast technique for correcting spectral leakage in motor diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1