Automatic online quantification and prioritization of data protection risks

Sascha Sven Zmiewski, Jan Laufer, Z. Mann
{"title":"Automatic online quantification and prioritization of data protection risks","authors":"Sascha Sven Zmiewski, Jan Laufer, Z. Mann","doi":"10.1145/3538969.3539005","DOIUrl":null,"url":null,"abstract":"Data processing systems operate in increasingly dynamic environments, such as in cloud or edge computing. In such environments, changes at run time can result in the dynamic appearance of data protection vulnerabilities, i.e., configurations in which an attacker could gain unauthorized access to confidential data. An autonomous system can mitigate such vulnerabilities by means of automated self-adaptations. If there are several data protection vulnerabilities at the same time, the system has to decide which ones to address first. In other areas of cybersecurity, risk-based approaches have proven useful for prioritizing where to focus efforts for increasing security. Traditionally, risk assessment is a manual and time-consuming process. On the other hand, addressing run-time risks requires timely decision-making, which in turn necessitates automated risk assessment. In this paper, we propose a mathematical model for quantifying data protection risks at run time. This model accounts for the specific properties of data protection risks, such as the time it takes to exploit a data protection vulnerability and the damage caused by such exploitation. Using this risk quantification, our approach can make, in an automated process, sound decisions on prioritizing data protection vulnerabilities dynamically. Experimental results show that our risk prioritization method leads to a reduction of up to 15.8% in the damage caused by data protection vulnerabilities.","PeriodicalId":306813,"journal":{"name":"Proceedings of the 17th International Conference on Availability, Reliability and Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3538969.3539005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data processing systems operate in increasingly dynamic environments, such as in cloud or edge computing. In such environments, changes at run time can result in the dynamic appearance of data protection vulnerabilities, i.e., configurations in which an attacker could gain unauthorized access to confidential data. An autonomous system can mitigate such vulnerabilities by means of automated self-adaptations. If there are several data protection vulnerabilities at the same time, the system has to decide which ones to address first. In other areas of cybersecurity, risk-based approaches have proven useful for prioritizing where to focus efforts for increasing security. Traditionally, risk assessment is a manual and time-consuming process. On the other hand, addressing run-time risks requires timely decision-making, which in turn necessitates automated risk assessment. In this paper, we propose a mathematical model for quantifying data protection risks at run time. This model accounts for the specific properties of data protection risks, such as the time it takes to exploit a data protection vulnerability and the damage caused by such exploitation. Using this risk quantification, our approach can make, in an automated process, sound decisions on prioritizing data protection vulnerabilities dynamically. Experimental results show that our risk prioritization method leads to a reduction of up to 15.8% in the damage caused by data protection vulnerabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据保护风险自动在线量化和优先级排序
数据处理系统在日益动态的环境中运行,例如云计算或边缘计算。在这样的环境中,运行时的更改可能导致数据保护漏洞的动态出现,即攻击者可以在其中获得对机密数据的未经授权访问的配置。自治系统可以通过自动自适应的方式减轻这些漏洞。如果同时存在多个数据保护漏洞,系统必须决定首先解决哪些漏洞。在其他网络安全领域,基于风险的方法已被证明对优先考虑在哪些领域集中精力提高安全性非常有用。传统上,风险评估是一个手动且耗时的过程。另一方面,处理运行时风险需要及时的决策,这反过来又需要自动的风险评估。在本文中,我们提出了一个在运行时量化数据保护风险的数学模型。该模型考虑了数据保护风险的特定属性,例如利用数据保护漏洞所需的时间以及利用该漏洞造成的损害。使用这种风险量化,我们的方法可以在自动化过程中动态地对数据保护漏洞的优先级做出合理的决定。实验结果表明,我们的风险优先排序方法使数据保护漏洞造成的损害降低了15.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Web Bot Detection Evasion Using Deep Reinforcement Learning Cyber-security measures for protecting EPES systems in the 5G area An Internet-Wide View of Connected Cars: Discovery of Exposed Automotive Devices Secure Mobile Agents on Embedded Boards: a TPM based solution SoK: Applications and Challenges of using Recommender Systems in Cybersecurity Incident Handling and Response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1