Efficient Image Denoising by MRF Approximation with Uniform-Sampled Multi-spanning-tree

Jun Sun, Hongdong Li, Xuming He
{"title":"Efficient Image Denoising by MRF Approximation with Uniform-Sampled Multi-spanning-tree","authors":"Jun Sun, Hongdong Li, Xuming He","doi":"10.1109/ICIG.2011.186","DOIUrl":null,"url":null,"abstract":"Traditionally, image processing based on Markov Random Field (MRF) is often addressed on a 4-connected grid graph defined on the image. This structure is not computationally efficient. In our work, we develop a multiple-trees structure to approximate the 4-connected grid. A set of spanning trees are generated by a new algorithm: re -- weighted random walk (RWRW). This structure effectively covers the original grid and guarantees uniformly distributed occurrence of each edge. Exact maximum a posterior (MAP) inference is performed on each tree structure by dynamic programming and a median filter is chosen to merge the results together. As an important application, image denoising is used to validate our method. Experimentally, our algorithm provides better performance and higher computational efficiency than traditional methods (such as Loopy Belief Propagation) on a 4-connected MRF.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Traditionally, image processing based on Markov Random Field (MRF) is often addressed on a 4-connected grid graph defined on the image. This structure is not computationally efficient. In our work, we develop a multiple-trees structure to approximate the 4-connected grid. A set of spanning trees are generated by a new algorithm: re -- weighted random walk (RWRW). This structure effectively covers the original grid and guarantees uniformly distributed occurrence of each edge. Exact maximum a posterior (MAP) inference is performed on each tree structure by dynamic programming and a median filter is chosen to merge the results together. As an important application, image denoising is used to validate our method. Experimentally, our algorithm provides better performance and higher computational efficiency than traditional methods (such as Loopy Belief Propagation) on a 4-connected MRF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于等采样多生成树的MRF近似有效图像去噪
传统上,基于马尔可夫随机场(MRF)的图像处理通常在图像上定义的4连通网格图上进行处理。这种结构计算效率不高。在我们的工作中,我们开发了一个多树结构来近似4连接网格。提出了一种新的生成树算法:重加权随机漫步(RWRW)。这种结构有效地覆盖了原始网格,保证了每条边的均匀分布。通过动态规划对每个树结构进行精确的最大后验(MAP)推理,并选择中值滤波器将结果合并在一起。作为一个重要的应用,图像去噪验证了我们的方法。实验结果表明,该算法在4连接MRF上比传统方法(如Loopy Belief Propagation)具有更好的性能和更高的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Face Recognition by Sparse Local Features from a Single Image under Occlusion LIDAR-based Long Range Road Intersection Detection A Novel Algorithm for Ship Detection Based on Dynamic Fusion Model of Multi-feature and Support Vector Machine Target Tracking Based on Wavelet Features in the Dynamic Image Sequence Visual Word Pairs for Similar Image Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1