Xi Shen, Jiangjie Chen, Jiaze Chen, Chun Zeng, Yanghua Xiao
{"title":"Diversified Query Generation Guided by Knowledge Graph","authors":"Xi Shen, Jiangjie Chen, Jiaze Chen, Chun Zeng, Yanghua Xiao","doi":"10.1145/3488560.3498431","DOIUrl":null,"url":null,"abstract":"Relevant articles recommendation plays an important role in online news platforms. Directly displaying recalled articles by a search engine lacks a deep understanding of the article contents. Generating clickable queries, on the other hand, summarizes an article in various aspects, which can be henceforth utilized to better connect relevant articles. Most existing approaches for generating article queries, however, do not consider the diversity of queries or whether they are appealing enough, which are essential for boosting user experience and platform drainage. To this end, we propose a Knowledge-Enhanced Diversified QuerY Generator (KEDY), which leverages an external knowledge graph (KG) as guidance. We diversify the query generation with the information of semantic neighbors of the entities in articles. We further constrain the diversification process with entity popularity knowledge to build appealing queries that users may be more interested in. The information within KG is propagated towards more popular entities with popularity-guided graph attention. We collect a news-query dataset from the search logs of a real-world search engine. Extensive experiments demonstrate our proposed KEDY can generate more diversified and insightful related queries than several strong baselines.","PeriodicalId":348686,"journal":{"name":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3488560.3498431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Relevant articles recommendation plays an important role in online news platforms. Directly displaying recalled articles by a search engine lacks a deep understanding of the article contents. Generating clickable queries, on the other hand, summarizes an article in various aspects, which can be henceforth utilized to better connect relevant articles. Most existing approaches for generating article queries, however, do not consider the diversity of queries or whether they are appealing enough, which are essential for boosting user experience and platform drainage. To this end, we propose a Knowledge-Enhanced Diversified QuerY Generator (KEDY), which leverages an external knowledge graph (KG) as guidance. We diversify the query generation with the information of semantic neighbors of the entities in articles. We further constrain the diversification process with entity popularity knowledge to build appealing queries that users may be more interested in. The information within KG is propagated towards more popular entities with popularity-guided graph attention. We collect a news-query dataset from the search logs of a real-world search engine. Extensive experiments demonstrate our proposed KEDY can generate more diversified and insightful related queries than several strong baselines.