Kai Jie Lim, L. W. Chong, S. Morris, Boon-Han Lim, M. Fahmi, C. Palanichamy
{"title":"Battery Lifetime And Life Cycle Cost Analysis Of Battery-Supercapacitor Hybrid Energy Storage System For Standalone Power System","authors":"Kai Jie Lim, L. W. Chong, S. Morris, Boon-Han Lim, M. Fahmi, C. Palanichamy","doi":"10.1109/ROMA55875.2022.9915663","DOIUrl":null,"url":null,"abstract":"In a battery storage based standalone PV system, lifespan of battery is usually short due to irregular charging pattern and frequent deep charging cycles. This project proposes a rule-based control strategy with mean-average filter for standalone LAB and SC. Also, the battery lifetime is estimated using rain-flow counting battery lifetime model to calculate life-cycle cost of proposed HESS included initial cost and replacement cost of LAB and SC. The results highlights that the proposed system effectively extend lead-acid battery lifetime by 14.8% from 3.25 years to 3.73 years. However, this study also reveals that the proposed HESS is 5.36% more expensive than the conventional standalone system lead-acid battery in term of life-cycle cost.","PeriodicalId":121458,"journal":{"name":"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMA55875.2022.9915663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In a battery storage based standalone PV system, lifespan of battery is usually short due to irregular charging pattern and frequent deep charging cycles. This project proposes a rule-based control strategy with mean-average filter for standalone LAB and SC. Also, the battery lifetime is estimated using rain-flow counting battery lifetime model to calculate life-cycle cost of proposed HESS included initial cost and replacement cost of LAB and SC. The results highlights that the proposed system effectively extend lead-acid battery lifetime by 14.8% from 3.25 years to 3.73 years. However, this study also reveals that the proposed HESS is 5.36% more expensive than the conventional standalone system lead-acid battery in term of life-cycle cost.