Analyzing memory accesses with modern processors

Stefan Noll, J. Teubner, Norman May, Alexander Böhm
{"title":"Analyzing memory accesses with modern processors","authors":"Stefan Noll, J. Teubner, Norman May, Alexander Böhm","doi":"10.1145/3399666.3399896","DOIUrl":null,"url":null,"abstract":"Debugging and tuning database systems is very challenging. Using common profiling tools is often not sufficient because they identify the machine instruction rather than the instance of a data structure that causes a performance problem. This leaves a problem's root cause such as memory hotspots or poor data layouts hidden. The state-of-the-art solution is to augment classical profiling with a memory trace. However, current approaches for collecting memory traces are not usable in practice due to their large runtime overhead. In this work, we leverage a mechanism available in modern processors to collect memory traces via hardware-based sampling. We evaluate our approach using a commercial and an open-source database system running the JCC-H benchmark. In particular, we demonstrate that our approach is practical due to its low runtime overhead and we illustrate how memory traces uncover new insights into the memory access characteristics of database systems.","PeriodicalId":256784,"journal":{"name":"Proceedings of the 16th International Workshop on Data Management on New Hardware","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3399666.3399896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Debugging and tuning database systems is very challenging. Using common profiling tools is often not sufficient because they identify the machine instruction rather than the instance of a data structure that causes a performance problem. This leaves a problem's root cause such as memory hotspots or poor data layouts hidden. The state-of-the-art solution is to augment classical profiling with a memory trace. However, current approaches for collecting memory traces are not usable in practice due to their large runtime overhead. In this work, we leverage a mechanism available in modern processors to collect memory traces via hardware-based sampling. We evaluate our approach using a commercial and an open-source database system running the JCC-H benchmark. In particular, we demonstrate that our approach is practical due to its low runtime overhead and we illustrate how memory traces uncover new insights into the memory access characteristics of database systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用现代处理器分析内存访问
调试和调优数据库系统非常具有挑战性。使用通用的分析工具通常是不够的,因为它们识别的是机器指令,而不是导致性能问题的数据结构的实例。这就隐藏了问题的根本原因,比如内存热点或糟糕的数据布局。最先进的解决方案是使用内存跟踪来增强传统的分析。然而,目前收集内存轨迹的方法在实践中是不可用的,因为它们的运行时开销很大。在这项工作中,我们利用现代处理器中可用的机制,通过基于硬件的采样来收集内存轨迹。我们使用运行JCC-H基准的商业和开源数据库系统来评估我们的方法。特别是,我们证明了我们的方法是实用的,因为它的低运行时开销,我们说明了内存跟踪如何揭示数据库系统的内存访问特征的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating re-pair compression using FPGAs Scalable and robust latches for database systems Efficient generation of machine code for query compilers nKV Empirical evaluation across multiple GPU-accelerated DBMSes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1