Optimization of a Three Degrees of Freedom DELTA Manipulator for Well-Conditioned Workspace with a Floating Point Genetic Algorithm

V. G. Silva, M. Tavakoli, Lino Marques
{"title":"Optimization of a Three Degrees of Freedom DELTA Manipulator for Well-Conditioned Workspace with a Floating Point Genetic Algorithm","authors":"V. G. Silva, M. Tavakoli, Lino Marques","doi":"10.4018/ijncr.2014100101","DOIUrl":null,"url":null,"abstract":"This paper demonstrates dexterity optimization of a three degrees of freedom (3 DOF) Delta manipulator. The parallel manipulator consists of three identical chains and is able to move on all three translational axes. In order to optimize the manipulator in term of dexterity, a floating point Genetic Algorithm (GA) global search method was applied. This algorithm intends to maximize the Global Condition Index (GCI) of the manipulator over its workspace and to propose the best design parameters such as the length of the links which result in a higher GCI and thus a better dexterity.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijncr.2014100101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper demonstrates dexterity optimization of a three degrees of freedom (3 DOF) Delta manipulator. The parallel manipulator consists of three identical chains and is able to move on all three translational axes. In order to optimize the manipulator in term of dexterity, a floating point Genetic Algorithm (GA) global search method was applied. This algorithm intends to maximize the Global Condition Index (GCI) of the manipulator over its workspace and to propose the best design parameters such as the length of the links which result in a higher GCI and thus a better dexterity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三自由度DELTA机械臂良好条件工作空间的浮点遗传算法优化
本文对三自由度Delta型机械臂的灵巧性优化进行了研究。并联机械手由三个相同的链条组成,并能在所有三个平移轴上移动。为了从灵巧度的角度对机械臂进行优化,采用浮点遗传算法(GA)进行全局搜索。该算法旨在最大化机械手在其工作空间上的全局条件指数(GCI),并提出最佳的设计参数,如连杆长度,从而获得更高的GCI,从而获得更好的灵巧性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights Into Incorporating Trustworthiness and Ethics in AI Systems With Explainable AI Concept Drift Adaptation in Intrusion Detection Systems Using Ensemble Learning Natural Computing of Human Facial Emotion Using Multi-Learning Fuzzy Approach Detection of Small Oranges Using YOLO v3 Feature Pyramid Mechanism Performance Parameter Evaluation of 7nm FinFET by Tuning Metal Work Function and High K Dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1