A programming model for GPU-based parallel computing with scalability and abstraction

B. Domonkos, G. Jakab
{"title":"A programming model for GPU-based parallel computing with scalability and abstraction","authors":"B. Domonkos, G. Jakab","doi":"10.1145/1980462.1980484","DOIUrl":null,"url":null,"abstract":"In this paper, we present a multi-level programming model for recent GPU-based high performance computing systems. Involving cooperative stream threads and symmetric multiprocessing threads our model gives a computational framework that scales through multi-GPU environments to GPU-cluster systems. Instead of hiding the execution environment from the programmer using compiler extensions or metaprogramming techniques we aim a solution that both enables optimizations and provides abstract problem space mapping with code reusability and virtualization of hardware resources in order to decrease the programming effort. We evaluate an implementation of our model based on CUDA, OpenMP, and MPI2 technologies on a complex practical application scenario and discuss its performance scaling behavior.","PeriodicalId":235681,"journal":{"name":"Spring conference on Computer graphics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spring conference on Computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1980462.1980484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present a multi-level programming model for recent GPU-based high performance computing systems. Involving cooperative stream threads and symmetric multiprocessing threads our model gives a computational framework that scales through multi-GPU environments to GPU-cluster systems. Instead of hiding the execution environment from the programmer using compiler extensions or metaprogramming techniques we aim a solution that both enables optimizations and provides abstract problem space mapping with code reusability and virtualization of hardware resources in order to decrease the programming effort. We evaluate an implementation of our model based on CUDA, OpenMP, and MPI2 technologies on a complex practical application scenario and discuss its performance scaling behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gpu的并行计算编程模型,具有可扩展性和抽象性
在本文中,我们提出了一个基于gpu的高性能计算系统的多级编程模型。通过协作流线程和对称多处理线程,我们的模型给出了一个可在多gpu环境下扩展到gpu集群系统的计算框架。我们没有使用编译器扩展或元编程技术向程序员隐藏执行环境,我们的目标是一个解决方案,它既支持优化,又提供抽象的问题空间映射,具有代码可重用性和硬件资源虚拟化,以减少编程工作。我们在一个复杂的实际应用场景中评估了基于CUDA、OpenMP和MPI2技术的模型的实现,并讨论了其性能扩展行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smoothing in 3D with reference points and polynomials Green's function solution to subsurface light transport for BRDF computation Doppler-based 3D Blood Flow Imaging and Visualization Parallel MDOM for light transport in participating media Dynamic Texture Enlargement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1