ROC Analysis for detection of Epileptical Seizures using Haralick features of Gamma band

M. Sameer, A. Gupta, Chinmay Chakraborty, B. Gupta
{"title":"ROC Analysis for detection of Epileptical Seizures using Haralick features of Gamma band","authors":"M. Sameer, A. Gupta, Chinmay Chakraborty, B. Gupta","doi":"10.1109/NCC48643.2020.9056027","DOIUrl":null,"url":null,"abstract":"In this study, gamma band (30–60 Hz) is used for detection of epileptical seizures using Haralick features. Most of the previous methods are based on the whole frequency spectrum for detection. This work use only high frequency electroencephalogram (EEG) subband for seizure detection using image descriptors. To convert one dimensional EEG data into image Short-time Fourier transform (STFT) has been used. Gamma band is cut from the time frequency (t-f) plane and Haralick features is used as image descriptors to fed in the decision tree classifier. The results have been evaluated using receiver operating characteristic (ROC) analysis. Maximum area under curve (AUC) of 0.96 is obtained to classify between seizures and healthy. Advantage of this work is rather using whole frequency band it utilizes only a particular band which reduces computational load. It also shows the utility of gamma band in seizure detection.","PeriodicalId":183772,"journal":{"name":"2020 National Conference on Communications (NCC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC48643.2020.9056027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this study, gamma band (30–60 Hz) is used for detection of epileptical seizures using Haralick features. Most of the previous methods are based on the whole frequency spectrum for detection. This work use only high frequency electroencephalogram (EEG) subband for seizure detection using image descriptors. To convert one dimensional EEG data into image Short-time Fourier transform (STFT) has been used. Gamma band is cut from the time frequency (t-f) plane and Haralick features is used as image descriptors to fed in the decision tree classifier. The results have been evaluated using receiver operating characteristic (ROC) analysis. Maximum area under curve (AUC) of 0.96 is obtained to classify between seizures and healthy. Advantage of this work is rather using whole frequency band it utilizes only a particular band which reduces computational load. It also shows the utility of gamma band in seizure detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用伽玛波段哈拉里克特征检测癫痫发作的ROC分析
在这项研究中,伽马波段(30-60赫兹)被用于使用哈拉里克特征检测癫痫发作。以往的方法大多是基于全频谱进行检测。这项工作只使用高频脑电图(EEG)子带检测癫痫发作使用图像描述符。利用短时傅里叶变换(STFT)将一维脑电信号转换成图像。从时频(t-f)平面截取伽马波段,并将哈拉里克特征作为图像描述符馈送到决策树分类器中。使用受试者工作特征(ROC)分析对结果进行评价。最大曲线下面积(AUC)为0.96,用于癫痫发作与健康的分类。这项工作的优点是利用整个频带,而不是利用特定的频带,从而减少了计算负荷。它还显示了伽马波段在癫痫检测中的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Two-Way Optimization Framework for Clustering of Images using Weighted Tensor Nuclear Norm Approximation Blind Channel Coding Identification of Convolutional encoder and Reed-Solomon encoder using Neural Networks Classification of Autism in Young Children by Phase Angle Clustering in Magnetoencephalogram Signals A Fusion-Based Approach to Identify the Phases of the Sit-to-Stand Test in Older People STPM Based Performance Analysis of Finite-Sized Differential Serial FSO Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1