A nearly optimal randomized algorithm for explorable heap selection

Sander Borst, D. Dadush, Sophie Huiberts, Danish Kashaev
{"title":"A nearly optimal randomized algorithm for explorable heap selection","authors":"Sander Borst, D. Dadush, Sophie Huiberts, Danish Kashaev","doi":"10.48550/arXiv.2210.05982","DOIUrl":null,"url":null,"abstract":"Explorable heap selection is the problem of selecting the $n$th smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS '86), who gave deterministic and randomized $n\\cdot \\exp(O(\\sqrt{\\log{n}}))$ time algorithms using $O(\\log(n)^{2.5})$ and $O(\\sqrt{\\log n})$ space respectively. We present a new randomized algorithm with running time $O(n\\log(n)^3)$ using $O(\\log n)$ space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an $\\Omega(\\log(n)n/\\log(\\log(n)))$ for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal.","PeriodicalId":421894,"journal":{"name":"Conference on Integer Programming and Combinatorial Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Integer Programming and Combinatorial Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.05982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Explorable heap selection is the problem of selecting the $n$th smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS '86), who gave deterministic and randomized $n\cdot \exp(O(\sqrt{\log{n}}))$ time algorithms using $O(\log(n)^{2.5})$ and $O(\sqrt{\log n})$ space respectively. We present a new randomized algorithm with running time $O(n\log(n)^3)$ using $O(\log n)$ space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an $\Omega(\log(n)n/\log(\log(n)))$ for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可探索堆选择的近乎最优的随机算法
可探索堆选择是在二进制堆中选择$n$最小值的问题。键值只能通过遍历底层无限二叉树来访问,算法的复杂性是通过在树中行进的总距离来衡量的(每条边都有单位代价)。该问题最初是由Karp, Saks和Widgerson (FOCS '86)提出的,作为研究具有存储限制的分支定界算法的搜索策略的模型,他们分别使用$O(\log(n)^{2.5})$和$O(\sqrt{\log n})$空间给出了确定性和随机$n\cdot \exp(O(\sqrt{\log{n}}))$时间算法。我们提出了一个新的随机化算法,运行时间$O(n\log(n)^3)$使用$O(\log n)$空间,大大提高了以前的最佳随机化运行时间,但代价是空间使用略有增加。我们还展示了在相同空间量内解决问题的任何算法的$\Omega(\log(n)n/\log(\log(n)))$,表明我们的算法几乎是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Complexity of Mixed-Integer Convex Optimization The Simultaneous Semi-random Model for TSP Constant-Competitiveness for Random Assignment Matroid Secretary Without Knowing the Matroid Optimizing Low Dimensional Functions over the Integers A linear time algorithm for linearizing quadratic and higher-order shortest path problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1