On the enhancement of dereverberation algorithms using multiple perceptual-evaluation criteria

Rafael Zambrano-Lopez, T. Prego, A. Lima, S. L. Netto
{"title":"On the enhancement of dereverberation algorithms using multiple perceptual-evaluation criteria","authors":"Rafael Zambrano-Lopez, T. Prego, A. Lima, S. L. Netto","doi":"10.1109/MMSP.2016.7813373","DOIUrl":null,"url":null,"abstract":"This paper describes an enhancement strategy based on several perceptual-assessment criteria for dereverberation algorithms. The complete procedure is applied to an algorithm for reverberant speech enhancement based on single-channel blind spectral subtraction. This enhancement was implemented by combining different quality measures, namely the so-called QAreverb, the speech-to-reverberation modulation energy ratio (SRMR) and the perceptual evaluation of speech quality (PESQ). Experimental results, using a 4211-signal speech database, indicate that the proposed modifications can improve the word error rate (WER) of speech recognition systems an average of 20%.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"519 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes an enhancement strategy based on several perceptual-assessment criteria for dereverberation algorithms. The complete procedure is applied to an algorithm for reverberant speech enhancement based on single-channel blind spectral subtraction. This enhancement was implemented by combining different quality measures, namely the so-called QAreverb, the speech-to-reverberation modulation energy ratio (SRMR) and the perceptual evaluation of speech quality (PESQ). Experimental results, using a 4211-signal speech database, indicate that the proposed modifications can improve the word error rate (WER) of speech recognition systems an average of 20%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多感知评价标准的去噪算法的改进
本文描述了一种基于几个感知评估准则的去噪算法增强策略。完整的程序应用于基于单通道盲谱减法的混响语音增强算法。这种增强是通过结合不同的质量度量来实现的,即所谓的QAreverb、语音与混响调制能量比(SRMR)和语音质量的感知评估(PESQ)。基于4211个信号的语音数据库的实验结果表明,所提出的改进方法可使语音识别系统的单词错误率(WER)平均提高20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized dirichlet mixture matching projection for supervised linear dimensionality reduction of proportional data Mobile live streaming: Insights from the periscope service Low-power distributed sparse recovery testbed on wireless sensor networks Laughter detection based on the fusion of local binary patterns, spectral and prosodic features An embedded 3D geometry score for mobile 3D visual search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1