Towards a Unified Implementation of GEMM in BLIS

RuQing G. Xu, Field G. Van Zee, Robert A. van de Geijn
{"title":"Towards a Unified Implementation of GEMM in BLIS","authors":"RuQing G. Xu, Field G. Van Zee, Robert A. van de Geijn","doi":"10.1145/3577193.3593707","DOIUrl":null,"url":null,"abstract":"Matrix libraries often focus on achieving high performance for problems considered to be either \"small\" or \"large\", as these two scenarios tend to respond best to different optimization strategies. We propose a unified technique for implementing matrix operations like general matrix multiplication (gemm) that can achieve high performance for both small and large problem sizes. The key is to fuse packing - an operation that copies data to a contiguous layout in memory and which is critical for large matrix performance - with the first computational \"pass\" over that data. This boosts performance across the problem size spectrum. As a result, tuning general-purpose libraries becomes simpler since it obviates the need to carefully express and parameterize logic that chooses between a \"small matrix\" strategy and a \"large matrix\" strategy. A prototype implementation of the technique built with the BLAS-like Library Instantiation Software (BLIS) framework is described and performance on a range of architectures is reported.","PeriodicalId":424155,"journal":{"name":"Proceedings of the 37th International Conference on Supercomputing","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577193.3593707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Matrix libraries often focus on achieving high performance for problems considered to be either "small" or "large", as these two scenarios tend to respond best to different optimization strategies. We propose a unified technique for implementing matrix operations like general matrix multiplication (gemm) that can achieve high performance for both small and large problem sizes. The key is to fuse packing - an operation that copies data to a contiguous layout in memory and which is critical for large matrix performance - with the first computational "pass" over that data. This boosts performance across the problem size spectrum. As a result, tuning general-purpose libraries becomes simpler since it obviates the need to carefully express and parameterize logic that chooses between a "small matrix" strategy and a "large matrix" strategy. A prototype implementation of the technique built with the BLAS-like Library Instantiation Software (BLIS) framework is described and performance on a range of architectures is reported.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BLIS中GEMM的统一实现
矩阵库通常专注于为“小”或“大”问题实现高性能,因为这两种场景往往对不同的优化策略做出最佳响应。我们提出了一种统一的技术来实现矩阵运算,如一般矩阵乘法(gem),可以在小问题和大问题上实现高性能。关键是将打包(一种将数据复制到内存中连续布局的操作,这对大矩阵性能至关重要)与数据的第一次计算“传递”融合在一起。这提高了问题大小范围内的性能。因此,调优通用库变得更加简单,因为它避免了在“小矩阵”策略和“大矩阵”策略之间进行选择时仔细表达和参数化逻辑的需要。描述了用类blas库实例化软件(BLIS)框架构建的该技术的原型实现,并报告了在一系列体系结构上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FLORIA: A Fast and Featherlight Approach for Predicting Cache Performance FT-topo: Architecture-Driven Folded-Triangle Partitioning for Communication-efficient Graph Processing Using Additive Modifications in LU Factorization Instead of Pivoting GRAP: Group-level Resource Allocation Policy for Reconfigurable Dragonfly Network in HPC Enabling Reconfigurable HPC through MPI-based Inter-FPGA Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1