Coverage range analysis of IEEE 802.15.4a IR-UWB for reliable data transmission in wireless sensor networks

Rafael Reinhold
{"title":"Coverage range analysis of IEEE 802.15.4a IR-UWB for reliable data transmission in wireless sensor networks","authors":"Rafael Reinhold","doi":"10.1109/IWMN.2013.6663772","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks for industrial communication require high reliability and low latency. Since state of the art wireless sensor networks do not entirely meet these requirements, novel system approaches need to be developed. Ultra wideband communication systems seem to be a promising approach due to the high bandwidth and the resulting robustness against frequency selectivity. Therefore, this paper analyzes the IEEE 802.15.4a impulse-radio ultra-wideband physical layer for the application in wireless sensor networks. The packet error rate for two types of receiver - energy detector and correlation receiver - is evaluated with respect to signal-to-noise ratio. Taking into account regulatory limitations and realistic transceiver characteristics, the maximal achievable coverage range is derived. As a result, the dependency between required reliability of a wireless sensor transmission and the achievable operating distance is given. This upper bound can be used as decision guideline in order to select a suitable system for deployment of a wireless sensor network.","PeriodicalId":218660,"journal":{"name":"2013 IEEE International Workshop on Measurements & Networking (M&N)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Measurements & Networking (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMN.2013.6663772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Wireless sensor networks for industrial communication require high reliability and low latency. Since state of the art wireless sensor networks do not entirely meet these requirements, novel system approaches need to be developed. Ultra wideband communication systems seem to be a promising approach due to the high bandwidth and the resulting robustness against frequency selectivity. Therefore, this paper analyzes the IEEE 802.15.4a impulse-radio ultra-wideband physical layer for the application in wireless sensor networks. The packet error rate for two types of receiver - energy detector and correlation receiver - is evaluated with respect to signal-to-noise ratio. Taking into account regulatory limitations and realistic transceiver characteristics, the maximal achievable coverage range is derived. As a result, the dependency between required reliability of a wireless sensor transmission and the achievable operating distance is given. This upper bound can be used as decision guideline in order to select a suitable system for deployment of a wireless sensor network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线传感器网络中可靠数据传输的IEEE 802.15.a IR-UWB覆盖范围分析
用于工业通信的无线传感器网络要求高可靠性和低延迟。由于目前的无线传感器网络不能完全满足这些要求,因此需要开发新的系统方法。由于高带宽和对频率选择性的鲁棒性,超宽带通信系统似乎是一种很有前途的方法。因此,本文分析了IEEE 802.15.a脉冲无线电超宽带物理层在无线传感器网络中的应用。用信噪比对两种类型的接收器——能量检测器和相关接收器的数据包误码率进行了评估。考虑监管限制和实际收发器特性,导出了最大可实现覆盖范围。因此,给出了无线传感器传输所需的可靠性与可实现的工作距离之间的依赖关系。该上限可以作为决策准则,以便选择合适的系统部署无线传感器网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient bandwidth allocation scheme for wireless networks using relay stations Evaluation and possible improvements of the ANT protocol for home heart monitoring applications Low-power communication protocol for low duty cycle data acquisition applications Routing update period in Cognitive Radio Ad Hoc Networks Detecting misbehaviour in WiFi using multi-layer metric data fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1