Ibrahim Hetita, A. S. Zalhaf, D. Mansour, Yang Han, P. Yang, Congling Wang
{"title":"Transient Overvoltage Response of Photovoltaic Panels to Lightning Impulse: Experimental Observations and Analysis","authors":"Ibrahim Hetita, A. S. Zalhaf, D. Mansour, Yang Han, P. Yang, Congling Wang","doi":"10.1109/APL57308.2023.10181419","DOIUrl":null,"url":null,"abstract":"In recent years, the utilization of solar energy systems for electricity generation has increased. This is attributed to the fact that they are environmentally friendly and sustainable sources of energy, unlike the limited supply of fossil fuels. Among the various forms of solar energy, photovoltaic (PV) cells are a significant means of generating electricity directly from the sun. However, since PV arrays are typically installed in outdoor areas, they are vulnerable to lightning strikes resulting in transient overvoltage, which can lead to equipment failure and potential safety hazards. Therefore, it is crucial to implement an efficient protection system to prevent lightning strikes and assess the transient performance of PV systems during such occurrences. This paper presents experimental observations and analysis of the transient overvoltage response of PV panels under lightning impulse conditions. The experiments are conducted using an impulse generator that allowed for the controlled application of lightning impulse to a small-scale PV panel. The transient overvoltage response is recorded using high-speed data acquisition systems. The experimental results showed that the transient overvoltage response of the PV panels was affected by several factors, including changing the measuring point location, the impulse voltage value, the earthing resistance value, and the earthed leg. Furthermore, an analysis of the experimental data was conducted to identify the underlying mechanisms responsible for the observed transient overvoltage behavior. The experimental observations and analysis presented in this paper provide valuable insights into the transient overvoltage response of PV panels under lightning impulse conditions. The results can be used to develop appropriate protective measures to minimize the risk of equipment failure and ensure the safe and reliable operation of PV systems.","PeriodicalId":371726,"journal":{"name":"2023 12th Asia-Pacific International Conference on Lightning (APL)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Asia-Pacific International Conference on Lightning (APL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APL57308.2023.10181419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the utilization of solar energy systems for electricity generation has increased. This is attributed to the fact that they are environmentally friendly and sustainable sources of energy, unlike the limited supply of fossil fuels. Among the various forms of solar energy, photovoltaic (PV) cells are a significant means of generating electricity directly from the sun. However, since PV arrays are typically installed in outdoor areas, they are vulnerable to lightning strikes resulting in transient overvoltage, which can lead to equipment failure and potential safety hazards. Therefore, it is crucial to implement an efficient protection system to prevent lightning strikes and assess the transient performance of PV systems during such occurrences. This paper presents experimental observations and analysis of the transient overvoltage response of PV panels under lightning impulse conditions. The experiments are conducted using an impulse generator that allowed for the controlled application of lightning impulse to a small-scale PV panel. The transient overvoltage response is recorded using high-speed data acquisition systems. The experimental results showed that the transient overvoltage response of the PV panels was affected by several factors, including changing the measuring point location, the impulse voltage value, the earthing resistance value, and the earthed leg. Furthermore, an analysis of the experimental data was conducted to identify the underlying mechanisms responsible for the observed transient overvoltage behavior. The experimental observations and analysis presented in this paper provide valuable insights into the transient overvoltage response of PV panels under lightning impulse conditions. The results can be used to develop appropriate protective measures to minimize the risk of equipment failure and ensure the safe and reliable operation of PV systems.