Cluster stability and the use of noise in interpretation of clustering

G. Davidson, B. Wylie, K. Boyack
{"title":"Cluster stability and the use of noise in interpretation of clustering","authors":"G. Davidson, B. Wylie, K. Boyack","doi":"10.1109/INFVIS.2001.963275","DOIUrl":null,"url":null,"abstract":"A clustering and ordination algorithm suitable for mining extremely large databases, including those produced by microarray expression studies, is described and analyzed for stability. Data from a yeast cell cycle experiment with 6000 genes and 18 experimental measurements per gene are used to test this algorithm under practical conditions. The process of assigning database objects to an X,Y coordinate, ordination, is shown to be stable with respect to random starting conditions, and with respect to minor perturbations in the starting similarity estimates. Careful analysis of the way clusters typically co-locate, versus the occasional large displacements under different starting conditions are shown to be useful in interpreting the data. This extra stability information is lost when only a single cluster is reported, which is currently the accepted practice. However, it is believed that the approaches presented here should become a standard part of best practices in analyzing computer clustering of large data collections.","PeriodicalId":131263,"journal":{"name":"IEEE Symposium on Information Visualization, 2001. INFOVIS 2001.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Information Visualization, 2001. INFOVIS 2001.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFVIS.2001.963275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

A clustering and ordination algorithm suitable for mining extremely large databases, including those produced by microarray expression studies, is described and analyzed for stability. Data from a yeast cell cycle experiment with 6000 genes and 18 experimental measurements per gene are used to test this algorithm under practical conditions. The process of assigning database objects to an X,Y coordinate, ordination, is shown to be stable with respect to random starting conditions, and with respect to minor perturbations in the starting similarity estimates. Careful analysis of the way clusters typically co-locate, versus the occasional large displacements under different starting conditions are shown to be useful in interpreting the data. This extra stability information is lost when only a single cluster is reported, which is currently the accepted practice. However, it is believed that the approaches presented here should become a standard part of best practices in analyzing computer clustering of large data collections.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚类稳定性和噪声在聚类解释中的应用
本文描述并分析了一种适合挖掘超大型数据库(包括由微阵列表达研究产生的数据库)的聚类和排序算法的稳定性。利用6000个基因的酵母细胞周期实验数据和每个基因18个实验测量值,在实际条件下对该算法进行了验证。将数据库对象分配到X,Y坐标,排序的过程,相对于随机起始条件和相对于起始相似性估计中的微小扰动,被证明是稳定的。仔细分析集群通常共定位的方式,以及不同初始条件下偶尔出现的大位移,在解释数据时是有用的。当仅报告单个集群时,这些额外的稳定性信息将丢失,这是目前公认的做法。然而,我们相信这里提出的方法应该成为分析大型数据集合的计算机聚类的最佳实践的标准部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
To draw a tree 2D vs 3D, implications on spatial memory Ordered treemap layouts Visualizing time-series on spirals Change blindness in information visualization: a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1