BinClone: Detecting Code Clones in Malware

Mohammad Reza Farhadi, B. Fung, P. Charland, M. Debbabi
{"title":"BinClone: Detecting Code Clones in Malware","authors":"Mohammad Reza Farhadi, B. Fung, P. Charland, M. Debbabi","doi":"10.1109/SERE.2014.21","DOIUrl":null,"url":null,"abstract":"To gain an in-depth understanding of the behaviour of a malware, reverse engineers have to disassemble the malware, analyze the resulting assembly code, and then archive the commented assembly code in a malware repository for future reference. In this paper, we have developed an assembly code clone detection system called BinClone to identify the code clone fragments from a collection of malware binaries with the following major contributions. First, we introduce two deterministic clone detection methods with the goals of improving the recall rate and facilitating malware analysis. Second, our methods allow malware analysts to discover both exact and inexact clones at different token normalization levels. Third, we evaluate our proposed clone detection methods on real-life malware binaries. To the best of our knowledge, this is the first work that studies the problem of assembly code clone detection for malware analysis.","PeriodicalId":248957,"journal":{"name":"2014 Eighth International Conference on Software Security and Reliability","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Eighth International Conference on Software Security and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERE.2014.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

To gain an in-depth understanding of the behaviour of a malware, reverse engineers have to disassemble the malware, analyze the resulting assembly code, and then archive the commented assembly code in a malware repository for future reference. In this paper, we have developed an assembly code clone detection system called BinClone to identify the code clone fragments from a collection of malware binaries with the following major contributions. First, we introduce two deterministic clone detection methods with the goals of improving the recall rate and facilitating malware analysis. Second, our methods allow malware analysts to discover both exact and inexact clones at different token normalization levels. Third, we evaluate our proposed clone detection methods on real-life malware binaries. To the best of our knowledge, this is the first work that studies the problem of assembly code clone detection for malware analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BinClone:检测恶意软件中的代码克隆
为了深入了解恶意软件的行为,逆向工程师必须反汇编恶意软件,分析产生的汇编代码,然后将注释的汇编代码归档到恶意软件存储库中,以备将来参考。在本文中,我们开发了一个名为BinClone的汇编代码克隆检测系统,用于从恶意软件二进制文件中识别代码克隆片段,主要贡献如下:首先,我们引入了两种确定性克隆检测方法,以提高召回率和方便恶意软件分析。其次,我们的方法允许恶意软件分析人员在不同的令牌规范化级别上发现精确和不精确的克隆。第三,我们在真实的恶意软件二进制文件中评估了我们提出的克隆检测方法。据我们所知,这是第一个研究恶意软件分析中汇编代码克隆检测问题的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Java Card Operating System Fast Discovery of VM-Sensitive Divergence Points with Basic Block Comparison Traceability-Based Formal Specification Inspection SeTGaM: Generalized Technique for Regression Testing Based on UML/OCL Models Game-Theoretic Strategy Analysis for Data Reliability Management in Cloud Storage Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1