An Efficient Algorithm for Informational Retrieval using Web Usage Mining

Preeti Rathi
{"title":"An Efficient Algorithm for Informational Retrieval using Web Usage Mining","authors":"Preeti Rathi","doi":"10.21742/ijhit.2019.12.2.03","DOIUrl":null,"url":null,"abstract":"Retrieval of information from the database and web log files is a very time consuming process. There are many techniques and models to retrieve data from the web. There are two types of data available on the web i.e. structured and unstructured. If data is structured then retrieval of information is an easy task. Otherwise, firstly apply the algorithm to unstructured data and then models will be applied. Vector space and Boolean models are used for IR. In this paper, we compare both Boolean model & Vector Space model techniques to retrieve data from the web (log files) and proposed a new algorithm based on time, frequency, memory consumption, etc.","PeriodicalId":170772,"journal":{"name":"International Journal of Hybrid Information Technology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hybrid Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21742/ijhit.2019.12.2.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Retrieval of information from the database and web log files is a very time consuming process. There are many techniques and models to retrieve data from the web. There are two types of data available on the web i.e. structured and unstructured. If data is structured then retrieval of information is an easy task. Otherwise, firstly apply the algorithm to unstructured data and then models will be applied. Vector space and Boolean models are used for IR. In this paper, we compare both Boolean model & Vector Space model techniques to retrieve data from the web (log files) and proposed a new algorithm based on time, frequency, memory consumption, etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于Web使用挖掘的高效信息检索算法
从数据库和web日志文件中检索信息是一个非常耗时的过程。从网络中检索数据有许多技术和模型。网络上有两种类型的数据,即结构化和非结构化。如果数据是结构化的,那么信息的检索就很容易。否则,首先将算法应用于非结构化数据,然后再应用模型。向量空间和布尔模型用于红外。在本文中,我们比较了布尔模型和向量空间模型两种从网络(日志文件)中检索数据的技术,并提出了一种基于时间、频率、内存消耗等因素的新算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Study of Handwriting Recognition Algorithms Based on Neural Networks Systematic Analysis of Environmental Issues on Ecological Smart Bee Farm by Linear Regression Model Barter Exchange Economy: A New Solution Concept for Resource Sharing in Wireless Multimedia Cloud Networks Improving Learning Performance in Neural Networks Land Suitability Evaluation for Cassava Production Using Integral Value Ranked Fuzzy AHP and GIS Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1