Improving Sampling Criterion for Alpha Matting

Jun Cheng, Z. Miao
{"title":"Improving Sampling Criterion for Alpha Matting","authors":"Jun Cheng, Z. Miao","doi":"10.1109/ACPR.2013.145","DOIUrl":null,"url":null,"abstract":"Natural image matting is a useful and challenging task when processing image or editing video. It aims at solving the problem of accurately extracting the foreground object of arbitrary shape from an image by use of user-provided extra information, such as trimap. In this paper, we present a new sampling criterion based on random search for image matting. This improved random search algorithm can effectively avoid leaving good samples out and can also deal well with the relation between nearby samples and distant samples. In addition, an effective cost function is adopted to evaluate the candidate samples. The experimental results show that our method can produce high-quality mattes.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Natural image matting is a useful and challenging task when processing image or editing video. It aims at solving the problem of accurately extracting the foreground object of arbitrary shape from an image by use of user-provided extra information, such as trimap. In this paper, we present a new sampling criterion based on random search for image matting. This improved random search algorithm can effectively avoid leaving good samples out and can also deal well with the relation between nearby samples and distant samples. In addition, an effective cost function is adopted to evaluate the candidate samples. The experimental results show that our method can produce high-quality mattes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进的Alpha抠图采样准则
在处理图像或编辑视频时,自然图像抠图是一项有用且具有挑战性的任务。它旨在利用用户提供的额外信息(如trimap),解决从图像中精确提取任意形状的前景目标的问题。本文提出了一种新的基于随机搜索的图像抠图采样准则。这种改进的随机搜索算法可以有效地避免遗漏好的样本,并且可以很好地处理近样本和远样本之间的关系。此外,采用有效代价函数对候选样本进行评价。实验结果表明,该方法可以产生高质量的磨砂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Compensation of Radial Distortion by Minimizing Entropy of Histogram of Oriented Gradients A Robust and Efficient Minutia-Based Fingerprint Matching Algorithm Sclera Recognition - A Survey A Non-local Sparse Model for Intrinsic Images Classification Based on Boolean Algebra and Its Application to the Prediction of Recurrence of Liver Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1