Anubha Gupta, Jayant Jain, Shubhankar Poundrik, M. Shetty, M. Girish, M. Gupta
{"title":"Interpretable AI Model-Based Predictions of ECG changes in COVID-recovered patients","authors":"Anubha Gupta, Jayant Jain, Shubhankar Poundrik, M. Shetty, M. Girish, M. Gupta","doi":"10.1109/BioSMART54244.2021.9677747","DOIUrl":null,"url":null,"abstract":"COVID-19 has caused immense social and economic losses throughout the world. Subjects recovered from COVID are learned to have complications. Some studies have shown a change in the heart rate variability (HRV) in COVID-recovered subjects compared to the healthy ones. This change indicates an increased risk of heart problems among the survivors of moderate-to-severe COVID. Hence, this study is aimed at finding HRV features that get altered in COVID-recovered subjects compared to healthy subjects. Data of COVID-recovered and healthy subjects were collected from two hospitals in Delhi, India. Seven ML models have been built to classify healthy versus COVID-recovered subjects. The best-performing model was further analyzed to explore the ranking of altered heart features in COVID-recovered subjects via AI interpretability. Ranking of these features can indicate cardiovascular health status to doctors, who can provide support to the COVID-recovered subjects for timely safeguard from heart disorders. To the best of our knowledge, this is the first study with an in-depth analysis of the heart status of COVID-recovered subjects via ECG analysis.","PeriodicalId":286026,"journal":{"name":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioSMART54244.2021.9677747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
COVID-19 has caused immense social and economic losses throughout the world. Subjects recovered from COVID are learned to have complications. Some studies have shown a change in the heart rate variability (HRV) in COVID-recovered subjects compared to the healthy ones. This change indicates an increased risk of heart problems among the survivors of moderate-to-severe COVID. Hence, this study is aimed at finding HRV features that get altered in COVID-recovered subjects compared to healthy subjects. Data of COVID-recovered and healthy subjects were collected from two hospitals in Delhi, India. Seven ML models have been built to classify healthy versus COVID-recovered subjects. The best-performing model was further analyzed to explore the ranking of altered heart features in COVID-recovered subjects via AI interpretability. Ranking of these features can indicate cardiovascular health status to doctors, who can provide support to the COVID-recovered subjects for timely safeguard from heart disorders. To the best of our knowledge, this is the first study with an in-depth analysis of the heart status of COVID-recovered subjects via ECG analysis.