Towards Context-Aware and Dynamic Management of Stream Processing Pipelines for Fog Computing

Patrick Wiener, Philipp Zehnder, Dominik Riemer
{"title":"Towards Context-Aware and Dynamic Management of Stream Processing Pipelines for Fog Computing","authors":"Patrick Wiener, Philipp Zehnder, Dominik Riemer","doi":"10.1109/CFEC.2019.8733145","DOIUrl":null,"url":null,"abstract":"Newly arising IoT-driven use cases often require low-latency anaiytics to derive time-sensitive actions, where a centralized cloud approach is not applicable. An emerging computing paradigm, referred to as fog computing, shifts the focus away from the central cloud by offloading specific computational parts of analytical stream processing pipelines (SPP) towards the edge of the network, thus leveraging existing resources close to where data is generated. However, in scenarios of mobile edge nodes, the inherent context changes need to be incorporated in the underlying fog cluster management, thus accounting for the dynamics by relocating certain processing elements of these SPP. This paper presents our initial work on a conceptual architecture for context-aware and dynamic management of SPP in the fog. We provide preliminary results, showing the general feasibility of relocating processing elements according to changes in the geolocation.","PeriodicalId":340721,"journal":{"name":"2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CFEC.2019.8733145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Newly arising IoT-driven use cases often require low-latency anaiytics to derive time-sensitive actions, where a centralized cloud approach is not applicable. An emerging computing paradigm, referred to as fog computing, shifts the focus away from the central cloud by offloading specific computational parts of analytical stream processing pipelines (SPP) towards the edge of the network, thus leveraging existing resources close to where data is generated. However, in scenarios of mobile edge nodes, the inherent context changes need to be incorporated in the underlying fog cluster management, thus accounting for the dynamics by relocating certain processing elements of these SPP. This paper presents our initial work on a conceptual architecture for context-aware and dynamic management of SPP in the fog. We provide preliminary results, showing the general feasibility of relocating processing elements according to changes in the geolocation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向雾计算的流处理管道的上下文感知和动态管理
新出现的物联网驱动的用例通常需要低延迟分析来派生时间敏感的操作,而集中式云方法不适用。一种新兴的计算范式,被称为雾计算,通过将分析流处理管道(SPP)的特定计算部分卸载到网络边缘,从而将焦点从中央云转移到网络边缘,从而利用靠近数据生成位置的现有资源。然而,在移动边缘节点的场景中,需要将固有的上下文变化纳入底层雾集群管理中,从而通过重新定位这些SPP的某些处理元素来考虑动态。本文介绍了我们对雾中SPP上下文感知和动态管理的概念架构的初步工作。我们提供了初步的结果,显示了根据地理位置的变化重新定位加工元素的总体可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning based Timeliness-Guaranteed and Energy-Efficient Task Assignment in Edge Computing Systems Development of a Smart Metering Microservice Based on Fast Fourier Transform (FFT) for Edge/Internet of Things Environments Enabling Fog Computing using Self-Organizing Compute Nodes Edge-to-Edge Resource Discovery using Metadata Replication ORCH: Distributed Orchestration Framework using Mobile Edge Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1