{"title":"EMG-based motion intention detection for control of a shoulder neuroprosthesis","authors":"R. Kirsch, Alain Au","doi":"10.1109/IEMBS.1997.758719","DOIUrl":null,"url":null,"abstract":"A method for predicting shoulder and motions from electromyograms (EMGs) from shoulder muscles using a time-delayed artificial neural network (TDANN) is described. The chosen network was found to be capable of characterizing the nonlinear and dynamic relationship between the EMG signals recorded from 6 shoulder muscles and the resulting shoulder and elbow motions in 5 able-bodied subjects. Preliminary work in one individual with tetraplegia due to spinal cord injury indicate that the same TDANN structure (although with a different set of muscle EMGs) will be also be sufficient to detect these motions in this population. This ability to detect shoulder and elbow motions would allow neuroprostheses based on functional neuromuscular stimulation (FNS) to appropriately vary stimulation patterns in a very natural manner for different tasks.","PeriodicalId":342750,"journal":{"name":"Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136)","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1997.758719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

A method for predicting shoulder and motions from electromyograms (EMGs) from shoulder muscles using a time-delayed artificial neural network (TDANN) is described. The chosen network was found to be capable of characterizing the nonlinear and dynamic relationship between the EMG signals recorded from 6 shoulder muscles and the resulting shoulder and elbow motions in 5 able-bodied subjects. Preliminary work in one individual with tetraplegia due to spinal cord injury indicate that the same TDANN structure (although with a different set of muscle EMGs) will be also be sufficient to detect these motions in this population. This ability to detect shoulder and elbow motions would allow neuroprostheses based on functional neuromuscular stimulation (FNS) to appropriately vary stimulation patterns in a very natural manner for different tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于肌电图的肩部神经假体控制运动意图检测
描述了一种使用延时人工神经网络(TDANN)从肩部肌肉肌电图(emg)预测肩部和运动的方法。所选择的网络能够表征5名健全受试者的6块肩部肌肉记录的肌电信号与由此产生的肩部和肘部运动之间的非线性动态关系。对一名因脊髓损伤而四肢瘫痪的患者的初步研究表明,相同的TDANN结构(尽管具有不同的肌肉肌电图)也足以检测该人群的这些运动。这种检测肩部和肘部运动的能力将允许基于功能性神经肌肉刺激(FNS)的神经假体以一种非常自然的方式为不同的任务适当地改变刺激模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Capillary model of crystal microchannel for red blood cell deformability measurement The design of a DSP based portable physiological signal monitor Measurement of temporal frequency characteristics of VEP using pseudorandom binary sequence and their correlation with cerebral blood flow in human visual cortex Early detection of bronchiolitis obliterans syndrome in lung transplant recipients with chronic rejection using home spirometry Time-course analysis of motor unit firing patterns in stroke patients using noninvasive multielectrode electromyography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1