S. Krishnamurthy, John Ardelius, E. Aurell, M. Dam, R. Stadler, F. Wuhib
{"title":"Brief announcement: the accuracy of tree-based counting in dynamic networks","authors":"S. Krishnamurthy, John Ardelius, E. Aurell, M. Dam, R. Stadler, F. Wuhib","doi":"10.1145/1835698.1835770","DOIUrl":null,"url":null,"abstract":"We study a simple Bellman-Ford-like protocol which performs network size estimation over a tree-shaped overlay. A continuous time Markov model is constructed which allows key protocol characteristics to be estimated under churn, including the expected number of nodes at a given (perceived) distance to the root and, for each such node, the expected (perceived) size of the subnetwork rooted at that node. We validate the model by simulations, using a range of network sizes, node degrees, and churn-to-protocol rates, with convincing results.","PeriodicalId":447863,"journal":{"name":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835698.1835770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We study a simple Bellman-Ford-like protocol which performs network size estimation over a tree-shaped overlay. A continuous time Markov model is constructed which allows key protocol characteristics to be estimated under churn, including the expected number of nodes at a given (perceived) distance to the root and, for each such node, the expected (perceived) size of the subnetwork rooted at that node. We validate the model by simulations, using a range of network sizes, node degrees, and churn-to-protocol rates, with convincing results.