Integrated 2D and 3D images for face recognition

Yingjie Wang, C. Chua, Yeong-Khing Ho, Ying Ren
{"title":"Integrated 2D and 3D images for face recognition","authors":"Yingjie Wang, C. Chua, Yeong-Khing Ho, Ying Ren","doi":"10.1109/ICIAP.2001.956984","DOIUrl":null,"url":null,"abstract":"This paper presents a feature-based face recognition system based on both 3D range data as well as 2D gray-level facial images. Ten 2D feature points and four 3D feature points are designed to be robust against changes of facial expressions and viewpoints and are described by Gabor filter responses in the 2D domain and point signature in the 3D domain. Localizing feature points in a new facial image is based on 3D-2D correspondence, average layout and corresponding bunch (covering a wide range of possible variations on each point). Extracted shape features from 3D feature points and texture features from 2D feature points are first projected into their own subspace using PCA. In subspace, the corresponding shape and texture weight vectors are then integrated to form an augmented vector which is used to represent each facial image. For a given test facial image, the best match in the model library is identified according to a classifier. Similarity function and support vector machine (SVM) are two types of classifier considered. Experimental results involving 2D persons with different facial expressions and extracted from different viewpoints have demonstrated the efficiency of our algorithm.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.956984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper presents a feature-based face recognition system based on both 3D range data as well as 2D gray-level facial images. Ten 2D feature points and four 3D feature points are designed to be robust against changes of facial expressions and viewpoints and are described by Gabor filter responses in the 2D domain and point signature in the 3D domain. Localizing feature points in a new facial image is based on 3D-2D correspondence, average layout and corresponding bunch (covering a wide range of possible variations on each point). Extracted shape features from 3D feature points and texture features from 2D feature points are first projected into their own subspace using PCA. In subspace, the corresponding shape and texture weight vectors are then integrated to form an augmented vector which is used to represent each facial image. For a given test facial image, the best match in the model library is identified according to a classifier. Similarity function and support vector machine (SVM) are two types of classifier considered. Experimental results involving 2D persons with different facial expressions and extracted from different viewpoints have demonstrated the efficiency of our algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成2D和3D图像,用于人脸识别
本文提出了一种基于三维距离数据和二维灰度图像的特征人脸识别系统。设计了10个二维特征点和4个三维特征点,对面部表情和视点的变化具有鲁棒性,并在二维域中使用Gabor滤波器响应,在三维域中使用点签名进行描述。在新的人脸图像中定位特征点是基于3D-2D对应,平均布局和对应束(覆盖每个点的广泛可能变化)。首先利用PCA将从三维特征点提取的形状特征和从二维特征点提取的纹理特征投影到各自的子空间中。然后在子空间中,对相应的形状和纹理权重向量进行积分,形成一个增广向量,用于表示每个面部图像。对于给定的测试面部图像,根据分类器识别模型库中的最佳匹配。相似函数和支持向量机(SVM)是两种分类器。实验结果表明,该算法具有不同的面部表情和不同的视点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Circle detection based on orientation matching Towards teleconferencing by view synthesis and large-baseline stereo Learning and caricaturing the face space using self-organization and Hebbian learning for face processing Bayesian face recognition with deformable image models Using feature-vector based analysis, based on principal component analysis and independent component analysis, for analysing hyperspectral images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1