Studying the Effect of Activation Function on Classification Accuracy Using Deep Artificial Neural Networks

A. Serwa
{"title":"Studying the Effect of Activation Function on Classification Accuracy Using Deep Artificial Neural Networks","authors":"A. Serwa","doi":"10.4172/2469-4134.1000203","DOIUrl":null,"url":null,"abstract":"Artificial Neural Networks (ANN) is widely used in remote sensing classification. Optimizing ANN still an enigmatic field of research especially in remote sensing. This research work is a trial to discover the ANN activation function to be used perfectly in classification (landcover mapping). The first step is preparing the reference map then assume a selected activation function and receive the ANN fuzzified output. The last step is comparing the output with the reference to reach the accuracy assessment. The research result is fixing the activation function that is perfect to be used in remote sensing classification. A real multi-spectral Landsat 7 satellite images were used and was classified (using ANN) and the accuracy of the classification was assessed with different activation functions. The sigmoid function was found to be the best activation function.","PeriodicalId":427440,"journal":{"name":"Journal of Remote Sensing & GIS","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Remote Sensing & GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2469-4134.1000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Artificial Neural Networks (ANN) is widely used in remote sensing classification. Optimizing ANN still an enigmatic field of research especially in remote sensing. This research work is a trial to discover the ANN activation function to be used perfectly in classification (landcover mapping). The first step is preparing the reference map then assume a selected activation function and receive the ANN fuzzified output. The last step is comparing the output with the reference to reach the accuracy assessment. The research result is fixing the activation function that is perfect to be used in remote sensing classification. A real multi-spectral Landsat 7 satellite images were used and was classified (using ANN) and the accuracy of the classification was assessed with different activation functions. The sigmoid function was found to be the best activation function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度人工神经网络研究激活函数对分类精度的影响
人工神经网络在遥感分类中得到了广泛的应用。优化人工神经网络仍然是一个神秘的研究领域,特别是在遥感领域。本研究工作是探索神经网络激活函数在分类(土地覆盖制图)中的完美应用的一次尝试。第一步是准备参考映射,然后假设一个选定的激活函数并接收人工神经网络模糊化的输出。最后一步是将输出与参考文献进行比较,以达到准确性评估。研究结果确定了较为完善的用于遥感分类的激活函数。利用一幅真实的多光谱Landsat 7卫星图像进行分类(采用人工神经网络),并利用不同的激活函数对分类的精度进行了评估。结果表明,s型函数是最佳的激活函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A STUDY ON ENHANCED GAS SENSING APPLICATION THROUGH SPR SENSORS AND PLASMONIC ZNO NANOSTRUCTURE Rooftop layout optimization for PV installation using GIS Application of GIS tools to the improvement of energy supply in PV rooftop installations Ignition of Electric Bike Using Fingerprint Sensor Mapping Flood Risk of Nsanje District in Malawi Using Sentinel-1 Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1