Lifetime cost optimized wind power control using hybrid energy storage system

Dongsheng Li, Fenglong Lu, Q. Lv, Li Shang
{"title":"Lifetime cost optimized wind power control using hybrid energy storage system","authors":"Dongsheng Li, Fenglong Lu, Q. Lv, Li Shang","doi":"10.1109/NAPS.2013.6666901","DOIUrl":null,"url":null,"abstract":"This paper presents the use of hybrid energy storage, composed of ultracapacitor and Lithiumion battery, to improve wind power stability. A control algorithm based on artificial neural network is proposed to manage the run-time use of the hybrid energy storage system to (1) optimize wind power predictability hence power grid stability, and (2) minimize the overall lifetime cost of the energy storage system. Evaluations using wind farm data demonstrate that, compared with two recently proposed control methods, the proposed control algorithm can extend system lifetime by 62% and 143%, and reduce the overall lifetime energy storage system cost (20 years) by 41% and 59%, respectively.","PeriodicalId":421943,"journal":{"name":"2013 North American Power Symposium (NAPS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2013.6666901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents the use of hybrid energy storage, composed of ultracapacitor and Lithiumion battery, to improve wind power stability. A control algorithm based on artificial neural network is proposed to manage the run-time use of the hybrid energy storage system to (1) optimize wind power predictability hence power grid stability, and (2) minimize the overall lifetime cost of the energy storage system. Evaluations using wind farm data demonstrate that, compared with two recently proposed control methods, the proposed control algorithm can extend system lifetime by 62% and 143%, and reduce the overall lifetime energy storage system cost (20 years) by 41% and 59%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合储能系统的风电全寿命成本优化控制
本文提出了利用超级电容器和锂离子电池组成的混合储能技术来提高风力发电的稳定性。提出了一种基于人工神经网络的混合储能系统运行时使用控制算法,以达到(1)优化风电的可预测性,从而保证电网的稳定性;(2)使储能系统的整体寿命成本最小化。利用风电场数据进行的评估表明,与最近提出的两种控制方法相比,所提出的控制算法可以延长系统寿命62%和143%,并将整体寿命储能系统成本(20年)分别降低41%和59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online estimation of power system distribution factors — A sparse representation approach Visualization of interarea oscillations using an extended subspace identification technique Wind power impact on power system frequency response Cost/benefit analysis for circuit breaker maintenance planning and scheduling Probabilistic modeling and reliability analysis for validating geomagnetically induced current data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1