Segmented CRC-Aided Order Statistical Decoding with Multiple Biases for Short Polar Codes

Hao Tang, Ming Zhan, Liangxi Liu, Mingjuan Qiu, Fu-Gang Wang, Qian Zhang, Yunkai Feng
{"title":"Segmented CRC-Aided Order Statistical Decoding with Multiple Biases for Short Polar Codes","authors":"Hao Tang, Ming Zhan, Liangxi Liu, Mingjuan Qiu, Fu-Gang Wang, Qian Zhang, Yunkai Feng","doi":"10.1109/ICIST52614.2021.9440582","DOIUrl":null,"url":null,"abstract":"With the advent of 5th generation (5G) mobile communication era, higher requirements are put forward for ultra-reliable and low-latency transmission compared with 4G, especially in the field of short packet communication. In this paper, we propose a segmented cyclic redundancy check aided order statistical decoding algorithm with multiple biases (BIAS- SCRC-OSD) for short polar codes. This algorithm constructs multiple information sets by repeatedly adding bias value, and selects more effective information sets to improve the decoding performance. For further improving the decoding performance, we change the original cyclic redundancy check (CRC) into segment check. The simulation results show that a suitable bias value can significantly improve the decoding performance with a small increase in computational complexity. Compared with the original CRC-aided order statistical decoding (OSD) algorithm, the proposed algorithm has a gain of about 0.8 dB at target bit error rate (BER) 10–4 with code rate R = 0.5 and code length N = 64.","PeriodicalId":371599,"journal":{"name":"2021 11th International Conference on Information Science and Technology (ICIST)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST52614.2021.9440582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the advent of 5th generation (5G) mobile communication era, higher requirements are put forward for ultra-reliable and low-latency transmission compared with 4G, especially in the field of short packet communication. In this paper, we propose a segmented cyclic redundancy check aided order statistical decoding algorithm with multiple biases (BIAS- SCRC-OSD) for short polar codes. This algorithm constructs multiple information sets by repeatedly adding bias value, and selects more effective information sets to improve the decoding performance. For further improving the decoding performance, we change the original cyclic redundancy check (CRC) into segment check. The simulation results show that a suitable bias value can significantly improve the decoding performance with a small increase in computational complexity. Compared with the original CRC-aided order statistical decoding (OSD) algorithm, the proposed algorithm has a gain of about 0.8 dB at target bit error rate (BER) 10–4 with code rate R = 0.5 and code length N = 64.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短极码的多偏差分段crc辅助序统计译码
随着第五代(5G)移动通信时代的到来,与4G相比,对传输的超可靠和低延迟提出了更高的要求,特别是在短分组通信领域。本文提出了一种分段循环冗余校验辅助多偏置序统计译码算法(BIAS- SCRC-OSD)。该算法通过反复添加偏置值来构建多个信息集,并从中选择更有效的信息集来提高解码性能。为了进一步提高解码性能,我们将原来的循环冗余校验(CRC)改为段校验。仿真结果表明,适当的偏置值可以在不增加计算复杂度的情况下显著提高译码性能。与原有的crc辅助顺序统计解码(OSD)算法相比,该算法在目标误码率(BER)为10-4、码率R = 0.5、码长N = 64时的增益约为0.8 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Top-k Graph Similarity Search Based on Hierarchical Inverted Index Disturbance observer based on NTSM output tracking control for second-order systems with power integrators and input quantization Alzheimer’s disease diagnosis method based on convolutional neural network using key slices voting Distributed Constrained Online Optimization with Noisy Communication Molecular Diagnosis: And using Ubiquitous Transcription Factor and MAPK to Recover Thyroid Cells of Hyperthyroidism and Heart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1