{"title":"Identifikasi Jenis Daging dengan Menggunakan Algoritma Convolution Neural Network","authors":"Peter Winardi, Endang Setyati","doi":"10.37823/insight.v3i02.178","DOIUrl":null,"url":null,"abstract":"Abstrak — Kebutuhan protein tubuh manusia salah satunya didapatkan dari daging. Banyak jenis daging yang bisa dikonsumsi untuk kebutuhan protein, diantaranya ayam, babi, bebek, kambing, sapi dan jenis lainnya. Pada kondisi daging mentah, tidak semua orang memahami karakteristik / identitas jenis daging karena ada beberapa jenis daging mentah yang hampir sama dari tampilan visual. Untuk menghindari kesalahan saat pemilihan jenis daging yang diinginkan perlu dilakukan identifikasi jenis daging. Pengenalan jenis daging dapat dilakukan dengan pengambilan gambar / citra secara digital. Citra digital yang didapatkan dapat dilakukan identifikasi dengan Convolution Neural Network. Salah satu kemampuan Convolution Neural Network (CNN) dapat melakukan proses identifikasi dan klasifikasi pada Computer Vision. Pada penelitian ini identifikasi jenis daging yang digunakan berupa adalah daging mentah tanpa lemak, kulit dan tulang. Jenis daging mentah yang digunakan sebanyak 5 buah berupa ayam, babi, bebek, kambing dan sapi. Melalui ekstraksi warna dan deteksi tepi beserta CNN didapatkan identitas jenis daging tersebut berupa tulisan / text sesuai jenis daging input citra. Dataset yang digunakan sebanyak 2,250 citra pada masing-masing jenis daging sehingga total 11,250 dataset citra. Penelitian dilakukan dalam 2 bagian sistem arsitektur. Bagian penelitian berupa Training dan Validation beserta testing. Pada bagian training dan validation dilakukan preprocessing . citra resize dari ukuran 300 × 300 piksel menjadi 50 × 50 piksel. Dataset dari masing-masing jenis citra daging mentah yang digunakan 2,250 citra terdiri dari citra jpeg dengan beberapa model citra , diantaranya citra asli, citra cropping, citra flip horisontal RGB, citra flip vertikal RGB, citra RGB, citra channel Red, citra channel Green, citra channel Blue, citra channel Magenta (greyscale), citra flip vertikal dan citra flip horisontal. Output training dan validasi berupa penyimpanan konfigurasi CNN yang dihasilkan untuk pemodelan saat testing beserta grafik cross entropy. Pembagian dataset citra model training dan validasi sebesar 70% training dan 30% validasi. Sistem testing digunakan uji coba menentukan jenis daging untuk mendapatkan output tulisan / text dari nama daging yang sesuai. Bahasa program yang digunakan penelitian berupa Python 3.8 beserta Tensorflow dan Keras dengan aplikasi PyCharm 2020.3.2 community edition. Untuk training dan validasi dilakukan uji coba pertama pada dataset dengan resize citra pada ukuran 50 X 50 pixel didapatkan hasil : training loss= 43.89% ; training accuracy= 82.82% ; validation loss= 87.44% ; validation juga dilakukan pada ukuran accuracy: 72.27%. Uji coba training dan validasi ke dua dilakukan resize citra pada ukuran 100 X 100 pixel dengan hasil : training loss= 35.74% ; training accuracy= 85.75% ; validation loss: 81.08% ; validation accuracy: 71.65%. Uji coba testing didapatkan nilai tertinggi dari angka array hasil pembandaingan dengan penyimpanan konfigurasi training dan validasi. Penelitian identifikasi jenis daging bisa ditingkatkan lebih baik bila dilengkapi dengan dataset citra yang lebih memadai.","PeriodicalId":273538,"journal":{"name":"Journal of Information System,Graphics, Hospitality and Technology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information System,Graphics, Hospitality and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37823/insight.v3i02.178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstrak — Kebutuhan protein tubuh manusia salah satunya didapatkan dari daging. Banyak jenis daging yang bisa dikonsumsi untuk kebutuhan protein, diantaranya ayam, babi, bebek, kambing, sapi dan jenis lainnya. Pada kondisi daging mentah, tidak semua orang memahami karakteristik / identitas jenis daging karena ada beberapa jenis daging mentah yang hampir sama dari tampilan visual. Untuk menghindari kesalahan saat pemilihan jenis daging yang diinginkan perlu dilakukan identifikasi jenis daging. Pengenalan jenis daging dapat dilakukan dengan pengambilan gambar / citra secara digital. Citra digital yang didapatkan dapat dilakukan identifikasi dengan Convolution Neural Network. Salah satu kemampuan Convolution Neural Network (CNN) dapat melakukan proses identifikasi dan klasifikasi pada Computer Vision. Pada penelitian ini identifikasi jenis daging yang digunakan berupa adalah daging mentah tanpa lemak, kulit dan tulang. Jenis daging mentah yang digunakan sebanyak 5 buah berupa ayam, babi, bebek, kambing dan sapi. Melalui ekstraksi warna dan deteksi tepi beserta CNN didapatkan identitas jenis daging tersebut berupa tulisan / text sesuai jenis daging input citra. Dataset yang digunakan sebanyak 2,250 citra pada masing-masing jenis daging sehingga total 11,250 dataset citra. Penelitian dilakukan dalam 2 bagian sistem arsitektur. Bagian penelitian berupa Training dan Validation beserta testing. Pada bagian training dan validation dilakukan preprocessing . citra resize dari ukuran 300 × 300 piksel menjadi 50 × 50 piksel. Dataset dari masing-masing jenis citra daging mentah yang digunakan 2,250 citra terdiri dari citra jpeg dengan beberapa model citra , diantaranya citra asli, citra cropping, citra flip horisontal RGB, citra flip vertikal RGB, citra RGB, citra channel Red, citra channel Green, citra channel Blue, citra channel Magenta (greyscale), citra flip vertikal dan citra flip horisontal. Output training dan validasi berupa penyimpanan konfigurasi CNN yang dihasilkan untuk pemodelan saat testing beserta grafik cross entropy. Pembagian dataset citra model training dan validasi sebesar 70% training dan 30% validasi. Sistem testing digunakan uji coba menentukan jenis daging untuk mendapatkan output tulisan / text dari nama daging yang sesuai. Bahasa program yang digunakan penelitian berupa Python 3.8 beserta Tensorflow dan Keras dengan aplikasi PyCharm 2020.3.2 community edition. Untuk training dan validasi dilakukan uji coba pertama pada dataset dengan resize citra pada ukuran 50 X 50 pixel didapatkan hasil : training loss= 43.89% ; training accuracy= 82.82% ; validation loss= 87.44% ; validation juga dilakukan pada ukuran accuracy: 72.27%. Uji coba training dan validasi ke dua dilakukan resize citra pada ukuran 100 X 100 pixel dengan hasil : training loss= 35.74% ; training accuracy= 85.75% ; validation loss: 81.08% ; validation accuracy: 71.65%. Uji coba testing didapatkan nilai tertinggi dari angka array hasil pembandaingan dengan penyimpanan konfigurasi training dan validasi. Penelitian identifikasi jenis daging bisa ditingkatkan lebih baik bila dilengkapi dengan dataset citra yang lebih memadai.