AOTF based molecular hyperspectral imaging system and its image pre-processing method

Yunfeng Gao, Mei Zhou, Qingli Li, Hongying Liu, Yang Zhang
{"title":"AOTF based molecular hyperspectral imaging system and its image pre-processing method","authors":"Yunfeng Gao, Mei Zhou, Qingli Li, Hongying Liu, Yang Zhang","doi":"10.1109/BMEI.2015.7401465","DOIUrl":null,"url":null,"abstract":"Utilizing both spectral and spatial information, hyperspectral images provide more detail than the single point spectroscopy or traditional images. With the improvement of hyperspectral imaging instrumentation, hyperspectral data analysis techniques are getting more attention. However, desired analysis and results depend strongly on the quality of image preprocessing. In this paper, we obtained hyperspectral images through an Acousto-Optic Tunable Filter (AOTF) based molecular hyperspectral imaging (MHI) system. Then the Lambert-Beer law based pre-processing method was presented to calibrate molecular hyperspectral images. This method combines the advantages of spectral correction and spatial denoising. We applied K-Means classification algorithm and IsoData classification algorithm to the preprocessed blood cell images and the experimental results prove the performance of the preprocessing method which is useful for the further classification.","PeriodicalId":119361,"journal":{"name":"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2015.7401465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Utilizing both spectral and spatial information, hyperspectral images provide more detail than the single point spectroscopy or traditional images. With the improvement of hyperspectral imaging instrumentation, hyperspectral data analysis techniques are getting more attention. However, desired analysis and results depend strongly on the quality of image preprocessing. In this paper, we obtained hyperspectral images through an Acousto-Optic Tunable Filter (AOTF) based molecular hyperspectral imaging (MHI) system. Then the Lambert-Beer law based pre-processing method was presented to calibrate molecular hyperspectral images. This method combines the advantages of spectral correction and spatial denoising. We applied K-Means classification algorithm and IsoData classification algorithm to the preprocessed blood cell images and the experimental results prove the performance of the preprocessing method which is useful for the further classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于AOTF的分子高光谱成像系统及其图像预处理方法
利用光谱和空间信息,高光谱图像比单点光谱或传统图像提供更多的细节。随着高光谱成像仪器的不断改进,高光谱数据分析技术越来越受到人们的重视。然而,所需的分析和结果在很大程度上取决于图像预处理的质量。本文采用声光可调滤波器(AOTF)为基础的分子高光谱成像(MHI)系统获得高光谱图像。然后提出了基于朗伯-比尔定律的分子高光谱图像预处理方法。该方法结合了光谱校正和空间去噪的优点。将K-Means分类算法和IsoData分类算法应用于预处理后的血细胞图像,实验结果证明了预处理方法的有效性,为进一步的分类提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECG signal compressed sensing using the wavelet tree model Development of a quantifiable optical reader for lateral flow immunoassay A tightly secure multi-party-signature protocol in the plain model Breast mass detection with kernelized supervised hashing 3D reconstruction of human enamel Ex vivo using high frequency ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1