Vehicle counting system in real-time

Salma Bouaich, Mohamed Adnane Mahraz, Jamal Rifïi, H. Tairi
{"title":"Vehicle counting system in real-time","authors":"Salma Bouaich, Mohamed Adnane Mahraz, Jamal Rifïi, H. Tairi","doi":"10.1109/ISACV.2018.8354033","DOIUrl":null,"url":null,"abstract":"To address the challenge of congestion, we propose a system that estimates the state of the road. To do that, we must be gone through several steps. In this work, we will present the first and the important step to estimate the vehicle flow; this later helps us to count the vehicles using the virtual line. Generally, we start with the background subtraction to isolate moving objects. To facilitate crossing of vehicles with the line, we apply the detection of objects. Our system uses the K-nearest neighbor (KNN) as a method to subtract the background, in order to apply our counting algorithm.","PeriodicalId":184662,"journal":{"name":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2018.8354033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

To address the challenge of congestion, we propose a system that estimates the state of the road. To do that, we must be gone through several steps. In this work, we will present the first and the important step to estimate the vehicle flow; this later helps us to count the vehicles using the virtual line. Generally, we start with the background subtraction to isolate moving objects. To facilitate crossing of vehicles with the line, we apply the detection of objects. Our system uses the K-nearest neighbor (KNN) as a method to subtract the background, in order to apply our counting algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
车辆实时计数系统
为了解决拥堵问题,我们提出了一个估算道路状况的系统。要做到这一点,我们必须经过几个步骤。在这项工作中,我们将介绍估计车辆流量的第一步,也是最重要的一步;稍后这将帮助我们计算使用虚拟线的车辆数量。通常,我们从背景减法开始,以隔离运动物体。为了方便车辆通过该线,我们应用了物体检测。我们的系统使用k近邻(KNN)作为减去背景的方法,以便应用我们的计数算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Policy based generic autonomic adapter for a context-aware social-collaborative system Dual-camera 3D head tracking for clinical infant monitoring Integrating web usage mining for an automatic learner profile detection: A learning styles-based approach Deep generative models: Survey Deep neural network dynamic traffic routing system for vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1