A Market Oriented, Reinforcement Learning Based Approach for Electric Vehicles Integration in Smart Micro Grids

Abdelrahman Abdelkader, I. Sychev, Riccardo Bonetto, F. Fitzek
{"title":"A Market Oriented, Reinforcement Learning Based Approach for Electric Vehicles Integration in Smart Micro Grids","authors":"Abdelrahman Abdelkader, I. Sychev, Riccardo Bonetto, F. Fitzek","doi":"10.1109/SmartGridComm.2019.8909698","DOIUrl":null,"url":null,"abstract":"In an independent self-sustained micro grid (MG) with limited energy resources, plugged-in electric vehicles (EV) must compete for available excess power supply or demand, modeled as a random variable. This paper proposes a distributed machine learning algorithm based on a Markov decision process (MDP) and non-cooperative game theory, that maximizes the EV’s profit under uncertainty of future MG supply/demand states, while satisfying specific battery constraints imposed by the EV owner. Performance evaluation of the proposed algorithm shows that even with no a priori knowledge of future MG supply/demand states, it achieves average profits of only 43% less than the global optimal profit. Results also show that using a cooperative version of the algorithm leads to a 12% increase in average profits.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"520 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In an independent self-sustained micro grid (MG) with limited energy resources, plugged-in electric vehicles (EV) must compete for available excess power supply or demand, modeled as a random variable. This paper proposes a distributed machine learning algorithm based on a Markov decision process (MDP) and non-cooperative game theory, that maximizes the EV’s profit under uncertainty of future MG supply/demand states, while satisfying specific battery constraints imposed by the EV owner. Performance evaluation of the proposed algorithm shows that even with no a priori knowledge of future MG supply/demand states, it achieves average profits of only 43% less than the global optimal profit. Results also show that using a cooperative version of the algorithm leads to a 12% increase in average profits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向市场、基于强化学习的智能微电网电动汽车集成方法
在能源有限的独立自持微电网(MG)中,插电式电动汽车(EV)必须竞争可用的剩余电力供应或需求,并将其建模为随机变量。本文提出了一种基于马尔可夫决策过程(MDP)和非合作博弈论的分布式机器学习算法,在满足电动汽车车主特定的电池约束条件下,在未来MG供需状态不确定的情况下,实现电动汽车利润最大化。对该算法的性能评估表明,即使不知道未来MG供需状态的先验知识,其平均利润也仅比全局最优利润低43%。结果还表明,使用该算法的合作版本可以使平均利润增加12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Demand Response of Voltage-Dependent Loads for Corrective Grid De-Congestion MEED: An Unsupervised Multi-Environment Event Detector for Non-Intrusive Load Monitoring Traction substation power signal characteristics and transient power quality evaluation method Reliable Streaming and Synchronization of Smart Meter Data over Intermittent Data Connections Synthetic Power Line Communications Channel Generation with Autoencoders and GANs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1