Privacy-Aware Forecasting of Quality of Service in Mobile Edge Computing

Huiying Jin, Pengcheng Zhang, Hai Dong, Yuelong Zhu, A. Bouguettaya
{"title":"Privacy-Aware Forecasting of Quality of Service in Mobile Edge Computing","authors":"Huiying Jin, Pengcheng Zhang, Hai Dong, Yuelong Zhu, A. Bouguettaya","doi":"10.1109/SERVICES55459.2022.00031","DOIUrl":null,"url":null,"abstract":"We propose a novel privacy-aware Quality of Service (QoS) forecasting approach in the mobile edge environment – Edge-PMAM (Edge QoS forecasting with Public Model and Attention Mechanism). Edge-PMAM can make realtime, accurate and personalized QoS forecasting on the premise of user privacy preservation. Edge-PMAM comprises a public model for privacy-aware QoS forecasting in an edge region and a private model for personalized QoS forecasting for an individual user. An attention mechanism atop Long Short-Term Memory and an automated edge region division solution are devised to enhance the prediction accuracy of the public and private models. We conduct a series of experiments based on public and self-collected data sets. The results based on public and self-collected data sets demonstrate that our approach can effectively improve forecasting performance and protect user privacy.","PeriodicalId":429807,"journal":{"name":"2022 IEEE World Congress on Services (SERVICES)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World Congress on Services (SERVICES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERVICES55459.2022.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a novel privacy-aware Quality of Service (QoS) forecasting approach in the mobile edge environment – Edge-PMAM (Edge QoS forecasting with Public Model and Attention Mechanism). Edge-PMAM can make realtime, accurate and personalized QoS forecasting on the premise of user privacy preservation. Edge-PMAM comprises a public model for privacy-aware QoS forecasting in an edge region and a private model for personalized QoS forecasting for an individual user. An attention mechanism atop Long Short-Term Memory and an automated edge region division solution are devised to enhance the prediction accuracy of the public and private models. We conduct a series of experiments based on public and self-collected data sets. The results based on public and self-collected data sets demonstrate that our approach can effectively improve forecasting performance and protect user privacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动边缘计算服务质量的隐私感知预测
提出了一种新的基于隐私感知的移动边缘环境下服务质量(QoS)预测方法——edge - pmam(基于公共模型和注意机制的边缘QoS预测)。Edge-PMAM可以在保护用户隐私的前提下进行实时、准确、个性化的QoS预测。edge - pmam包括用于边缘区域中隐私感知QoS预测的公共模型和用于单个用户的个性化QoS预测的私有模型。为了提高公共和私有模型的预测精度,设计了长短期记忆的注意机制和自动边缘区域划分方案。我们基于公共和自己收集的数据集进行了一系列实验。基于公共和自收集数据集的结果表明,我们的方法可以有效地提高预测性能并保护用户隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Orchestration of data-intensive pipeline in 5G-enabled Edge Continuum Plenary Panel 2 - Technology, Innovation & Partnership - From Lab to Home xAFCL: Run Scalable Function Choreographies Across Multiple FaaS Systems QUEST: Privacy-Preserving Monitoring of Network Data Plenary Panel 5 - Software Services Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1