A Virtual Machine Placement Strategy Based on Virtual Machine Selection and Integration

Denghui Zhang, Guo Yin
{"title":"A Virtual Machine Placement Strategy Based on Virtual Machine Selection and Integration","authors":"Denghui Zhang, Guo Yin","doi":"10.32604/jiot.2021.016936","DOIUrl":null,"url":null,"abstract":": Cloud data centers face the largest energy consumption. In order to save energy consumption in cloud data centers, cloud service providers adopt a virtual machine migration strategy. In this paper, we propose an efficient virtual machine placement strategy (VMP-SI) based on virtual machine selection and integration. Our proposed VMP-SI strategy divides the migration process into three phases: physical host state detection, virtual machine selection and virtual machine placement. The local regression robust (LRR) algorithm and minimum migration time (MMT) policy are individual used in the first and section phase, respectively. Then we design a virtual machine migration strategy that integrates the process of virtual machine selection and placement, which can ensure a satisfactory utilization efficiency of the hardware resources of the active physical host. Experimental results show that our proposed method is better than the approach in Cloudsim under various performance metrics.","PeriodicalId":345256,"journal":{"name":"Journal on Internet of Things","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/jiot.2021.016936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Cloud data centers face the largest energy consumption. In order to save energy consumption in cloud data centers, cloud service providers adopt a virtual machine migration strategy. In this paper, we propose an efficient virtual machine placement strategy (VMP-SI) based on virtual machine selection and integration. Our proposed VMP-SI strategy divides the migration process into three phases: physical host state detection, virtual machine selection and virtual machine placement. The local regression robust (LRR) algorithm and minimum migration time (MMT) policy are individual used in the first and section phase, respectively. Then we design a virtual machine migration strategy that integrates the process of virtual machine selection and placement, which can ensure a satisfactory utilization efficiency of the hardware resources of the active physical host. Experimental results show that our proposed method is better than the approach in Cloudsim under various performance metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于虚拟机选择与集成的虚拟机布局策略
云数据中心面临最大的能源消耗。为了节省云数据中心的能源消耗,云服务提供商采用了虚拟机迁移策略。本文提出了一种基于虚拟机选择和集成的高效虚拟机放置策略(VMP-SI)。我们提出的VMP-SI策略将迁移过程分为三个阶段:物理主机状态检测、虚拟机选择和虚拟机放置。局部鲁棒回归(LRR)算法和最小迁移时间(MMT)策略分别用于第一阶段和分段阶段。然后设计了一种虚拟机迁移策略,该策略将虚拟机的选择和放置过程集成在一起,可以保证活动物理主机的硬件资源得到满意的利用效率。实验结果表明,在各种性能指标下,我们提出的方法都优于Cloudsim中的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Real Time Vision-Based Smoking Detection Framework on Edge Lightweight Algorithm for MQTT Protocol to Enhance Power Consumption in Healthcare Environment A Review about Wireless Sensor Networks and the Internet of Things Signature-Based Intrusion Detection System in Wireless 6G IoT Networks Study on Optimization of Urban Rail Train Operation Control Curve Based on Improved Multi-Objective Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1