Network Filtering of Spatial-temporal GNN for Multivariate Time-series Prediction

Yuanrong Wang, T. Aste
{"title":"Network Filtering of Spatial-temporal GNN for Multivariate Time-series Prediction","authors":"Yuanrong Wang, T. Aste","doi":"10.1145/3533271.3561678","DOIUrl":null,"url":null,"abstract":"We propose an architecture for multivariate time-series prediction that integrates a spatial-temporal graph neural network with a filtering module which filters the inverse correlation matrix into a sparse network structure. In contrast with existing sparsification methods adopted in graph neural networks, our model explicitly leverages time-series filtering to overcome the low signal-to-noise ratio typical of complex systems data. We present a set of experiments, where we predict future sales volume from a synthetic time-series sales volume dataset. The proposed spatial-temporal graph neural network displays superior performances to baseline approaches with no graphical information, fully connected, disconnected graphs, and unfiltered graphs, as well as the state-of-the-art spatial-temporal GNN. Comparison of the results with Diffusion Convolutional Recurrent Neural Network (DCRNN) suggests that, by combining a (inferior) GNN with graph sparsification and filtering, one can achieve comparable or better efficacy than the state-of-the-art in multivariate time-series regression.","PeriodicalId":134888,"journal":{"name":"Proceedings of the Third ACM International Conference on AI in Finance","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533271.3561678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose an architecture for multivariate time-series prediction that integrates a spatial-temporal graph neural network with a filtering module which filters the inverse correlation matrix into a sparse network structure. In contrast with existing sparsification methods adopted in graph neural networks, our model explicitly leverages time-series filtering to overcome the low signal-to-noise ratio typical of complex systems data. We present a set of experiments, where we predict future sales volume from a synthetic time-series sales volume dataset. The proposed spatial-temporal graph neural network displays superior performances to baseline approaches with no graphical information, fully connected, disconnected graphs, and unfiltered graphs, as well as the state-of-the-art spatial-temporal GNN. Comparison of the results with Diffusion Convolutional Recurrent Neural Network (DCRNN) suggests that, by combining a (inferior) GNN with graph sparsification and filtering, one can achieve comparable or better efficacy than the state-of-the-art in multivariate time-series regression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多变量时间序列预测的时空GNN网络滤波
我们提出了一种多变量时间序列预测体系结构,该体系结构将时空图神经网络与过滤模块相结合,该模块将逆相关矩阵过滤成稀疏网络结构。与图神经网络中采用的现有稀疏化方法相比,我们的模型明确地利用时间序列滤波来克服复杂系统数据典型的低信噪比。我们提出了一组实验,其中我们从合成的时间序列销售量数据集预测未来的销售量。本文提出的时空图神经网络在无图形信息、全连通图、不连通图和未过滤图以及最先进的时空GNN的基线方法中表现出优越的性能。与扩散卷积递归神经网络(DCRNN)的结果比较表明,通过将(较差的)GNN与图稀疏化和滤波相结合,可以达到与最先进的多变量时间序列回归相当或更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Core Matrix Regression and Prediction with Regularization Risk-Aware Linear Bandits with Application in Smart Order Routing Addressing Extreme Market Responses Using Secure Aggregation Addressing Non-Stationarity in FX Trading with Online Model Selection of Offline RL Experts Objective Driven Portfolio Construction Using Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1