{"title":"An Enhanced SCMA Detector Enabled by Deep Neural Network","authors":"Chao Lu, Wei Xu, Hong Shen, Hua Zhang, X. You","doi":"10.1109/ICCChina.2018.8641219","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a learning approach for sparse code multiple access (SCMA) signal detection by using a deep neural network via unfolding the procedure of message passing algorithm (MPA). The MPA can be converted to a sparsely connected neural network if we treat the weights as the parameters of a neural network. The neural network can be trained off-line and then deployed for online detection. By further refining the network weights corresponding to the edges of a factor graph, the proposed method achieves a better performance. Moreover, the deep neural network based detection is a computationally efficient since highly paralleled computations in the network are enabled in emerging Artificial Intelligence (AI) chips.","PeriodicalId":170216,"journal":{"name":"2018 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChina.2018.8641219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
In this paper, we propose a learning approach for sparse code multiple access (SCMA) signal detection by using a deep neural network via unfolding the procedure of message passing algorithm (MPA). The MPA can be converted to a sparsely connected neural network if we treat the weights as the parameters of a neural network. The neural network can be trained off-line and then deployed for online detection. By further refining the network weights corresponding to the edges of a factor graph, the proposed method achieves a better performance. Moreover, the deep neural network based detection is a computationally efficient since highly paralleled computations in the network are enabled in emerging Artificial Intelligence (AI) chips.