S. Mehdi Seyednejad, hamidreza musavi, S. Mohaddese Seyednejad, Tooraj Darabi
{"title":"Fuzzy projective clustering in high dimension data using decrement size of data","authors":"S. Mehdi Seyednejad, hamidreza musavi, S. Mohaddese Seyednejad, Tooraj Darabi","doi":"10.1109/DMO.2011.5976521","DOIUrl":null,"url":null,"abstract":"Today, data clustering problems became an important challenge in Data Mining domain. A kind of clustering is projective clustering. Since a lot of researches has done in this article but each of previous algorithms had some defects that we will be indicate in this paper. We propose a new algorithm based on fuzzy sets and at first using this approach detect and eliminate unimportant properties for all clusters. Then we remove outliers, finally we use weighted fuzzy c-mean algorithm according to offered formula for fuzzy calculations. Experimental results show that our approach has more performance and accuracy than similar algorithms.","PeriodicalId":436393,"journal":{"name":"2011 3rd Conference on Data Mining and Optimization (DMO)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd Conference on Data Mining and Optimization (DMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMO.2011.5976521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Today, data clustering problems became an important challenge in Data Mining domain. A kind of clustering is projective clustering. Since a lot of researches has done in this article but each of previous algorithms had some defects that we will be indicate in this paper. We propose a new algorithm based on fuzzy sets and at first using this approach detect and eliminate unimportant properties for all clusters. Then we remove outliers, finally we use weighted fuzzy c-mean algorithm according to offered formula for fuzzy calculations. Experimental results show that our approach has more performance and accuracy than similar algorithms.