Fuzzy projective clustering in high dimension data using decrement size of data

S. Mehdi Seyednejad, hamidreza musavi, S. Mohaddese Seyednejad, Tooraj Darabi
{"title":"Fuzzy projective clustering in high dimension data using decrement size of data","authors":"S. Mehdi Seyednejad, hamidreza musavi, S. Mohaddese Seyednejad, Tooraj Darabi","doi":"10.1109/DMO.2011.5976521","DOIUrl":null,"url":null,"abstract":"Today, data clustering problems became an important challenge in Data Mining domain. A kind of clustering is projective clustering. Since a lot of researches has done in this article but each of previous algorithms had some defects that we will be indicate in this paper. We propose a new algorithm based on fuzzy sets and at first using this approach detect and eliminate unimportant properties for all clusters. Then we remove outliers, finally we use weighted fuzzy c-mean algorithm according to offered formula for fuzzy calculations. Experimental results show that our approach has more performance and accuracy than similar algorithms.","PeriodicalId":436393,"journal":{"name":"2011 3rd Conference on Data Mining and Optimization (DMO)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd Conference on Data Mining and Optimization (DMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMO.2011.5976521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Today, data clustering problems became an important challenge in Data Mining domain. A kind of clustering is projective clustering. Since a lot of researches has done in this article but each of previous algorithms had some defects that we will be indicate in this paper. We propose a new algorithm based on fuzzy sets and at first using this approach detect and eliminate unimportant properties for all clusters. Then we remove outliers, finally we use weighted fuzzy c-mean algorithm according to offered formula for fuzzy calculations. Experimental results show that our approach has more performance and accuracy than similar algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据减量的高维数据模糊投影聚类
目前,数据聚类问题已成为数据挖掘领域的一个重要挑战。聚类的一种是投影聚类。由于本文做了大量的研究,但之前的算法都有一些缺陷,我们将在本文中指出。我们提出了一种基于模糊集的新算法,并首先使用该方法检测和消除所有聚类的不重要属性。然后去除异常值,最后根据给出的模糊计算公式使用加权模糊c均值算法。实验结果表明,与同类算法相比,该方法具有更高的性能和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of various Wiener model identification approach in modelling nonlinear process Data mining technique for expertise search in a special interest group knowledge portal A frequent keyword-set based algorithm for topic modeling and clustering of research papers Optimisation model of selective cutting for Timber Harvest Planning in Peninsular Malaysia Reducing network intrusion detection association rules using Chi-Squared pruning technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1