On the Selection of Significant Channel Parameters for OFDM Systems: A Hypotheses Testing Based Approach

A. El-Sallam, S. Nordholm, H. H. Dam
{"title":"On the Selection of Significant Channel Parameters for OFDM Systems: A Hypotheses Testing Based Approach","authors":"A. El-Sallam, S. Nordholm, H. H. Dam","doi":"10.1109/APCC.2006.255782","DOIUrl":null,"url":null,"abstract":"This paper considers multiple hypothesis techniques for the identification of significant channel parameters in OFDM systems. Unlike several OFDM channel estimation methods, where the channel response is estimated based on a pre-defined or an estimated length. In this work, the channel length is assumed unknown and only significant channel parameters will be identified. First, using a training based scenario, a model is proposed for the channel response. Second the model parameters are estimated using least squares (LS). Based on those estimates, multiple hypothesis tests based on F-statistics are constructed to classify each significant parameter. Simulation results show that the method is capable of identifying significant channel parameters with high probability under various SNR. In addition a receiver based on those parameters have a better performance than one which is based on the full model","PeriodicalId":205758,"journal":{"name":"2006 Asia-Pacific Conference on Communications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Asia-Pacific Conference on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCC.2006.255782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers multiple hypothesis techniques for the identification of significant channel parameters in OFDM systems. Unlike several OFDM channel estimation methods, where the channel response is estimated based on a pre-defined or an estimated length. In this work, the channel length is assumed unknown and only significant channel parameters will be identified. First, using a training based scenario, a model is proposed for the channel response. Second the model parameters are estimated using least squares (LS). Based on those estimates, multiple hypothesis tests based on F-statistics are constructed to classify each significant parameter. Simulation results show that the method is capable of identifying significant channel parameters with high probability under various SNR. In addition a receiver based on those parameters have a better performance than one which is based on the full model
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OFDM系统重要信道参数的选择:基于假设检验的方法
本文考虑了OFDM系统中重要信道参数识别的多重假设技术。与几种OFDM信道估计方法不同,其中信道响应是基于预定义的或估计的长度估计的。在这项工作中,假设信道长度是未知的,只有重要的信道参数将被识别。首先,使用基于训练的场景,提出了通道响应的模型。其次,利用最小二乘法对模型参数进行估计。基于这些估计,构建基于f统计的多个假设检验来对每个显著参数进行分类。仿真结果表明,该方法能够在不同信噪比下高概率地识别出重要信道参数。此外,基于这些参数的接收机比基于全模型的接收机具有更好的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
aMAC: Advanced MAC Scheme for Mobile Ad-hoc Networks A Modeling for Radiowave Propagation of M/W bands in Microcells A Taxonomy of Electronic Funds Transfer Domain Intrusions and its Feasibility Converting into Ontology TAEE: A NEW Transmit-rate Aware Energy Efficient Routing Algorithm For Multicast/Broadcast In Ad Hoc Network Extended TCAM for Adopting Range and Negation Rules in Packet Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1