Scene Edge Target Recovery of Scanning Radar Angular Super-Resolution Based on Data Extrapolation

Deqing Mao, Yongchao Zhang, Yao Kang, Yin Zhang, Weibo Huo, Yulin Huang, Jianyu Yang
{"title":"Scene Edge Target Recovery of Scanning Radar Angular Super-Resolution Based on Data Extrapolation","authors":"Deqing Mao, Yongchao Zhang, Yao Kang, Yin Zhang, Weibo Huo, Yulin Huang, Jianyu Yang","doi":"10.1109/IGARSS39084.2020.9323387","DOIUrl":null,"url":null,"abstract":"Radar antenna can work in scanning mode to obtain a wide region observation. However, for the targets located at the scene edge, the targets are only swept by less than half of the radar beam. Therefore, the scene edge targets are recovered distortedly using the conventional angular super-resolution methods. To keep the performance of recovered targets in the full scene, in this paper, a data extrapolation-based parallel iterative adaptive approach (PIAA) is proposed. First, we analyze the cause of scene edge target distortion. Then, the echo data is extrapolated by half of the radar beam to compensate the unobserved data. Last, a parallel iterative adaptive approach is proposed to recover the targets efficiently. Simulation data is applied to verify the proposed method.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"30 3 Suppl 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Radar antenna can work in scanning mode to obtain a wide region observation. However, for the targets located at the scene edge, the targets are only swept by less than half of the radar beam. Therefore, the scene edge targets are recovered distortedly using the conventional angular super-resolution methods. To keep the performance of recovered targets in the full scene, in this paper, a data extrapolation-based parallel iterative adaptive approach (PIAA) is proposed. First, we analyze the cause of scene edge target distortion. Then, the echo data is extrapolated by half of the radar beam to compensate the unobserved data. Last, a parallel iterative adaptive approach is proposed to recover the targets efficiently. Simulation data is applied to verify the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据外推的扫描雷达角超分辨率场景边缘目标恢复
雷达天线可以在扫描模式下工作,以获得大范围的观测。然而,对于位于场景边缘的目标,目标只被不到一半的雷达波束扫描。因此,使用传统的角度超分辨方法会导致场景边缘目标的畸变恢复。为了保证恢复目标在全场景下的性能,本文提出了一种基于数据外推的并行迭代自适应方法。首先,分析了场景边缘目标失真的原因。然后,用雷达波束的一半外推回波数据来补偿未观测数据。最后,提出了一种并行迭代自适应方法来有效地恢复目标。仿真数据验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retrieval of Solar-Induced Chlorophyll Fluorescence at Red Spectral Peak with Tropomi on Sentinel-5 Precursor Mapping the Rate of Carbon Mineralization in Oman Ophiolites Using Sentinel-1 InSAR Time Series Characterization of Biomass Burning Aerosols During the 2019 Fire Event: Singapore and Kuching Cities Exploitation of Earth Observations: OGC Contributions to GRSS Earth Science Informatics A Pseudospectral Time-Domain Simulator for Large-Scale Half-Space Electromagnetic Scattering and Radar Sounding Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1