Systolic time interval estimation at the sternum using continuous wave radar with body-contact antennas

Dilpreet Buxi, Jean-Michel Redouté, M. Yuce
{"title":"Systolic time interval estimation at the sternum using continuous wave radar with body-contact antennas","authors":"Dilpreet Buxi, Jean-Michel Redouté, M. Yuce","doi":"10.1109/BSN.2017.7936014","DOIUrl":null,"url":null,"abstract":"Cardiovascular vital signs are measured using continuous wave (CW) radar at 2.45GHz with a body-contact antenna. Using a previously collected database of thirty second recordings at paced breathing conditions, CW radar signals were measured together with heart sounds, electrocardiogram (ECG), respiration and impedance cardiogram (ICG) were as reference signals. Using arbitrarily chosen features from the radar signal, the systolic time intervals (STI)s from radar are compared with those from the ICG. The correlation coefficients between the STIs of radar and ICG were 0.72, 0.66 and 0.81 for the pre-ejection period, left ventricular ejection time and electromechanical systole respectively. The p-value was below 0.0001 for all coefficients, indicating a significant correlation. The results indicate that the radar signals capture cardiomechanical signals, which have great potential to be used for STI estimation in ambulatory conditions.","PeriodicalId":249670,"journal":{"name":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"516 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2017.7936014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Cardiovascular vital signs are measured using continuous wave (CW) radar at 2.45GHz with a body-contact antenna. Using a previously collected database of thirty second recordings at paced breathing conditions, CW radar signals were measured together with heart sounds, electrocardiogram (ECG), respiration and impedance cardiogram (ICG) were as reference signals. Using arbitrarily chosen features from the radar signal, the systolic time intervals (STI)s from radar are compared with those from the ICG. The correlation coefficients between the STIs of radar and ICG were 0.72, 0.66 and 0.81 for the pre-ejection period, left ventricular ejection time and electromechanical systole respectively. The p-value was below 0.0001 for all coefficients, indicating a significant correlation. The results indicate that the radar signals capture cardiomechanical signals, which have great potential to be used for STI estimation in ambulatory conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用身体接触天线的连续波雷达估计胸骨收缩时间间隔
心血管生命体征测量使用连续波(CW)雷达在2.45GHz与身体接触的天线。使用先前收集的有节奏呼吸条件下的30秒记录数据库,连续波雷达信号与心音、心电图(ECG)、呼吸和阻抗心电图(ICG)作为参考信号一起测量。利用从雷达信号中任意选择的特征,将雷达信号的收缩时间间隔与ICG信号的收缩时间间隔进行比较。射血前期、左室射血时间和机电收缩期,雷达sti与ICG的相关系数分别为0.72、0.66和0.81。所有系数的p值均低于0.0001,表明相关性显著。结果表明,雷达信号捕获的心力学信号具有很大的潜力,可用于动态条件下的STI估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radiowave propagation characteristics of the intra-body channel at 2.38 GHz Smart-shoe self-powered by walking A personalized air quality sensing system - a preliminary study on assessing the air quality of London underground stations Unsupervised deep representation learning to remove motion artifacts in free-mode body sensor networks Quantifying postural instability in Parkinsonian gait from inertial sensor data during standardised clinical gait tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1