Fine-Grained Profiling for Data-Intensive Workflows

N. Dun, K. Taura, A. Yonezawa
{"title":"Fine-Grained Profiling for Data-Intensive Workflows","authors":"N. Dun, K. Taura, A. Yonezawa","doi":"10.1109/CCGRID.2010.29","DOIUrl":null,"url":null,"abstract":"Profiling is an effective dynamic analysis approach to investigate complex applications. ParaTrac is a user-level profiler using file system and process tracing techniques for data-intensive workflow applications. In two respects ParaTrac helps users refine the orchestration of workflows. First, the profiles of I/O characteristics enable users to quickly identify bottlenecks of underlying I/O subsystems. Second, ParaTrac can exploit fine-grained data-processes interactions in workflow execution to help users understand, characterize, and manage realistic data-intensive workflows. Experiments on thoroughly profiling Montage workflow demonstrate that ParaTrac is scalable to tracing events of thousands of processes and effective in guiding fine-grained workflow scheduling or workflow management systems improvements.","PeriodicalId":444485,"journal":{"name":"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2010.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Profiling is an effective dynamic analysis approach to investigate complex applications. ParaTrac is a user-level profiler using file system and process tracing techniques for data-intensive workflow applications. In two respects ParaTrac helps users refine the orchestration of workflows. First, the profiles of I/O characteristics enable users to quickly identify bottlenecks of underlying I/O subsystems. Second, ParaTrac can exploit fine-grained data-processes interactions in workflow execution to help users understand, characterize, and manage realistic data-intensive workflows. Experiments on thoroughly profiling Montage workflow demonstrate that ParaTrac is scalable to tracing events of thousands of processes and effective in guiding fine-grained workflow scheduling or workflow management systems improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据密集型工作流的细粒度分析
概要分析是研究复杂应用程序的一种有效的动态分析方法。ParaTrac是一个用户级分析器,使用文件系统和进程跟踪技术,用于数据密集型工作流应用程序。ParaTrac在两个方面帮助用户优化工作流的编排。首先,I/O特征概要使用户能够快速识别底层I/O子系统的瓶颈。其次,ParaTrac可以在工作流执行中利用细粒度的数据处理交互来帮助用户理解、描述和管理实际的数据密集型工作流。对彻底剖析蒙太奇工作流的实验表明,ParaTrac可扩展到跟踪数千个过程的事件,并有效地指导细粒度工作流调度或工作流管理系统改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In Search of Visualization Metaphors for PlanetLab Multi-criteria Content Adaptation Service Selection Broker Enabling the Next Generation of Scalable Clusters Development and Support of Platforms for Research into Rare Diseases Using Cloud Constructs and Predictive Analysis to Enable Pre-Failure Process Migration in HPC Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1