Monolithic III-nitride photonic circuit for multifunctional visible light communication

Yuan Jiang, Zheng Shi, Xumin Gao, Jia-lei Yuan, Shuai Zhang, Yongjin Wang
{"title":"Monolithic III-nitride photonic circuit for multifunctional visible light communication","authors":"Yuan Jiang, Zheng Shi, Xumin Gao, Jia-lei Yuan, Shuai Zhang, Yongjin Wang","doi":"10.1109/ICCCHINAW.2017.8355274","DOIUrl":null,"url":null,"abstract":"Nitride semiconductor materials inherently have the intriguing functionalities of simultaneous emission, transmission and photodetection, which enable the photonic integration of emitter, waveguide, modulator and photodiode on a single chip [1-3]. In particular, InGaN/GaN multiple-quantum-well (MQW) diodes exhibit a simultaneous light-emitting light-detecting function, endowing the MQW-diode with the capability of producing transmitter and receiver using same fabrication procedure for visible light communication. Both transmitter and receiver share the identical InGaN/GaN MQW active region. To validate the device concept, we propose a wafer-level procedure for the fabrication of monolithic III-nitride photonic circuit on an III-nitride-on-silicon platform for multifunctional visible light communication. Epitaxial films are grown on (111) silicon substrates with intermediate Al-composition step-graded buffer layers, and membrane-type monolithic III-nitride photonic circuit is obtained by a combination of silicon removal and III-nitride film backside thinning. Monolithic III-nitride photonic circuit of emitter, waveguide and photodiode forms an in-plane visible light communication system [4], and the out-of-plane light emission is used for building a free-space visible light communication system [5]. The III-nitride photonic circuit experimentally demonstrates a data transmission over 100 Mb/s on a wire-bonded chip. Moreover, a full-duplex light communication is demonstrated by utilizing simultaneous light-emitting light-detecting function of the MQW-diode, and the self-interference cancellation method is used to decode the superimposed signals. These results are promising for the development of monolithic III-nitride photonic circuit for diverse applications in visible light communication, optical sensor and intelligent displays.","PeriodicalId":164833,"journal":{"name":"2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCHINAW.2017.8355274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nitride semiconductor materials inherently have the intriguing functionalities of simultaneous emission, transmission and photodetection, which enable the photonic integration of emitter, waveguide, modulator and photodiode on a single chip [1-3]. In particular, InGaN/GaN multiple-quantum-well (MQW) diodes exhibit a simultaneous light-emitting light-detecting function, endowing the MQW-diode with the capability of producing transmitter and receiver using same fabrication procedure for visible light communication. Both transmitter and receiver share the identical InGaN/GaN MQW active region. To validate the device concept, we propose a wafer-level procedure for the fabrication of monolithic III-nitride photonic circuit on an III-nitride-on-silicon platform for multifunctional visible light communication. Epitaxial films are grown on (111) silicon substrates with intermediate Al-composition step-graded buffer layers, and membrane-type monolithic III-nitride photonic circuit is obtained by a combination of silicon removal and III-nitride film backside thinning. Monolithic III-nitride photonic circuit of emitter, waveguide and photodiode forms an in-plane visible light communication system [4], and the out-of-plane light emission is used for building a free-space visible light communication system [5]. The III-nitride photonic circuit experimentally demonstrates a data transmission over 100 Mb/s on a wire-bonded chip. Moreover, a full-duplex light communication is demonstrated by utilizing simultaneous light-emitting light-detecting function of the MQW-diode, and the self-interference cancellation method is used to decode the superimposed signals. These results are promising for the development of monolithic III-nitride photonic circuit for diverse applications in visible light communication, optical sensor and intelligent displays.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多功能可见光通信的单片iii -氮化物光子电路
氮化半导体材料本身具有同时发射、传输和光探测的有趣功能,这使得发射器、波导、调制器和光电二极管在单个芯片上的光子集成成为可能[1-3]。特别是,InGaN/GaN多量子阱(MQW)二极管具有同时发光的光探测功能,使MQW二极管能够使用相同的制造工艺生产可见光通信的发射器和接收器。发射器和接收器共享相同的InGaN/GaN MQW活动区域。为了验证器件概念,我们提出了一种晶圆级工艺,用于在多功能可见光通信平台上制造单片iii -氮化物光子电路。在(111)硅衬底上生长具有中间al成分阶梯渐变缓冲层的外延薄膜,并通过去硅和iii -氮化物薄膜背面减薄相结合获得薄膜型单片iii -氮化物光子电路。发射器、波导和光电二极管的单片iii -氮化物光子电路构成面内可见光通信系统[4],利用面外发光构成自由空间可见光通信系统[5]。iii -氮化物光子电路在线键芯片上实现了100 Mb/s以上的数据传输。利用mqw二极管的同步发光探测功能,实现了全双工光通信,并采用自干扰对消方法对叠加信号进行解码。这些结果为单片iii -氮化物光子电路在可见光通信、光学传感器和智能显示等领域的广泛应用提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visible light emission from porous silicon carbide IoT system evaluation methods for very bursty traffic with contention based access High-speed optical camera communication using selective capture When visible light communications meet photonic nanostructures Nyquist-PAM-4 transmission using linear DPD and MLSE for indoor visible light communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1