CENATAV Voice-Group Systems for Albayzin 2018 Speaker Diarization Evaluation Campaign

Edward L. Campbell, Gabriel Hernández, J. Lara
{"title":"CENATAV Voice-Group Systems for Albayzin 2018 Speaker Diarization Evaluation Campaign","authors":"Edward L. Campbell, Gabriel Hernández, J. Lara","doi":"10.21437/IBERSPEECH.2018-47","DOIUrl":null,"url":null,"abstract":"Usually, the environment to record a voice signal is not ideal and, in order to improve the representation of the speaker characteristic space, it is necessary to use a robust algorithm, thus making the representation more stable in the presence of noise. A Diarization system that focuses on the use of robust feature extraction techniques is proposed in this paper. The pre-sented features ( such as Mean Hilbert Envelope Coefficients, Medium Duration Modulation Coefficients and Power Normalization Cepstral Coefficients ) were not used in other Albayzin Challenges. These robust techniques have a common characteristic, which is the use of a Gammatone filter-bank for divid-ing the voice signal in sub-bands as an alternative option to the classical Triangular filter-bank used in Mel Frequency Cepstral Coefficients. The experiment results show a more stable Diarization Error Rate in robust features than in classic features.","PeriodicalId":115963,"journal":{"name":"IberSPEECH Conference","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IberSPEECH Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/IBERSPEECH.2018-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Usually, the environment to record a voice signal is not ideal and, in order to improve the representation of the speaker characteristic space, it is necessary to use a robust algorithm, thus making the representation more stable in the presence of noise. A Diarization system that focuses on the use of robust feature extraction techniques is proposed in this paper. The pre-sented features ( such as Mean Hilbert Envelope Coefficients, Medium Duration Modulation Coefficients and Power Normalization Cepstral Coefficients ) were not used in other Albayzin Challenges. These robust techniques have a common characteristic, which is the use of a Gammatone filter-bank for divid-ing the voice signal in sub-bands as an alternative option to the classical Triangular filter-bank used in Mel Frequency Cepstral Coefficients. The experiment results show a more stable Diarization Error Rate in robust features than in classic features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CENATAV语音组系统用于2018年阿尔拜辛的说话人分化评价活动
通常,记录语音信号的环境并不理想,为了改善说话人特征空间的表示,有必要使用鲁棒算法,从而使表示在存在噪声时更加稳定。本文提出了一种基于鲁棒特征提取技术的数字化系统。所提出的特征(如平均希尔伯特包络系数、中持续时间调制系数和功率归一化倒谱系数)在其他Albayzin挑战中未被使用。这些鲁棒技术有一个共同的特点,那就是使用伽玛酮滤波器组将语音信号分成子带,作为Mel频率倒谱系数中使用的经典三角形滤波器组的替代选择。实验结果表明,鲁棒特征比经典特征具有更稳定的双化错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Recurrent Neural Network Approach to Audio Segmentation for Broadcast Domain Data The Intelligent Voice System for the IberSPEECH-RTVE 2018 Speaker Diarization Challenge AUDIAS-CEU: A Language-independent approach for the Query-by-Example Spoken Term Detection task of the Search on Speech ALBAYZIN 2018 evaluation The GTM-UVIGO System for Audiovisual Diarization Baseline Acoustic Models for Brazilian Portuguese Using Kaldi Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1