A Novel Feature Level Fusion Method for Classification of Remote Sensing Images

Shashidhar Sonnad, Y. Lalitha
{"title":"A Novel Feature Level Fusion Method for Classification of Remote Sensing Images","authors":"Shashidhar Sonnad, Y. Lalitha","doi":"10.37591/.V10I1.281","DOIUrl":null,"url":null,"abstract":"Feature level fusion approach is utilized in this paper to classify remote sensing images. Texture features are extracted from panchromatic images using mixed Gabor filter (GB), fast gray level co-occurrence matrix (GLCM) and linear binary pattern (LBP). The resultant texture features are classified using nearest neighbor (k-NN) classification method. Spectral features are extracted from the MS image and segmented using over segmented k-means algorithm with novel initialization (OSKNI). Finally the segmented MS image and grid classified PAN image are fused to get the final classified result. To evaluate the performance of the proposed method we used kappa statistics like, Users Accuracy (UA), Producer’s accuracy (PA), Overall classification accuracy (OCA), Expected Classification Accuracy (ECA) and KHAT values. Keywords: Texture, spectral, panchromatic, multispectral, segmentation Cite this Article Shashidhar Sonnad, Lalitha YS. A Novel Feature Level Fusion method for Classification of Remote Sensing Images. Journal of Remote Sensing & GIS. 2019; 10(1): 58–65p.","PeriodicalId":427440,"journal":{"name":"Journal of Remote Sensing & GIS","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Remote Sensing & GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37591/.V10I1.281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature level fusion approach is utilized in this paper to classify remote sensing images. Texture features are extracted from panchromatic images using mixed Gabor filter (GB), fast gray level co-occurrence matrix (GLCM) and linear binary pattern (LBP). The resultant texture features are classified using nearest neighbor (k-NN) classification method. Spectral features are extracted from the MS image and segmented using over segmented k-means algorithm with novel initialization (OSKNI). Finally the segmented MS image and grid classified PAN image are fused to get the final classified result. To evaluate the performance of the proposed method we used kappa statistics like, Users Accuracy (UA), Producer’s accuracy (PA), Overall classification accuracy (OCA), Expected Classification Accuracy (ECA) and KHAT values. Keywords: Texture, spectral, panchromatic, multispectral, segmentation Cite this Article Shashidhar Sonnad, Lalitha YS. A Novel Feature Level Fusion method for Classification of Remote Sensing Images. Journal of Remote Sensing & GIS. 2019; 10(1): 58–65p.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的遥感图像特征级融合分类方法
本文采用特征级融合方法对遥感图像进行分类。采用混合Gabor滤波器(GB)、快速灰度共生矩阵(GLCM)和线性二值模式(LBP)对全色图像进行纹理特征提取。使用最近邻(k-NN)分类方法对生成的纹理特征进行分类。从MS图像中提取光谱特征,并使用具有新颖初始化(OSKNI)的超分割k-means算法进行分割。最后将分割后的MS图像与网格分类后的PAN图像进行融合,得到最终的分类结果。为了评估所提出方法的性能,我们使用kappa统计数据,如用户精度(UA),生产者精度(PA),总体分类精度(OCA),预期分类精度(ECA)和KHAT值。关键词:纹理,光谱,全色,多光谱,分割一种新的遥感图像特征级融合分类方法。遥感与地理信息系统学报。2019;10 (1): 58 - 65 p。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A STUDY ON ENHANCED GAS SENSING APPLICATION THROUGH SPR SENSORS AND PLASMONIC ZNO NANOSTRUCTURE Rooftop layout optimization for PV installation using GIS Application of GIS tools to the improvement of energy supply in PV rooftop installations Ignition of Electric Bike Using Fingerprint Sensor Mapping Flood Risk of Nsanje District in Malawi Using Sentinel-1 Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1