Application of Pendulum Theory to a Model of Overturning of a Rectangular Hull

Yuji Doya, T. Sawada
{"title":"Application of Pendulum Theory to a Model of Overturning of a Rectangular Hull","authors":"Yuji Doya, T. Sawada","doi":"10.2534/jjasnaoe.33.55","DOIUrl":null,"url":null,"abstract":"This paper reports an experimental study on application of pendulum theory to determine the possibility of overturning of a rectangular hull model. The model was not a hull of a self-propelling ship but was a pontoon used as a non-self-navigating work vessel. The model begins to list when an unbalanced load is applied. It can then either stabilize in an inclined state or continue to overturn, throwing the unbalanced load midway, and finally stabilizing in the inverted position. In a mid-air experiment, this correlation was observed for two motion scenarios: pendulum and rotational motion. The two motions were reproduced by changing the mass of the load. The experimental results closely match those of analysis performed using the Runge-Kutta method. In an experiment in a water tank, the change in the mass of the load applied to the model hull and the effect of buoyancy were considered for analysis. Both experimental results and analytic results exhibited the same tendency for overturning. The validity of our analytical method using pendulum theory was confirmed by the consistency between these relationships.","PeriodicalId":192323,"journal":{"name":"Journal of the Japan Society of Naval Architects and Ocean Engineers","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Society of Naval Architects and Ocean Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2534/jjasnaoe.33.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports an experimental study on application of pendulum theory to determine the possibility of overturning of a rectangular hull model. The model was not a hull of a self-propelling ship but was a pontoon used as a non-self-navigating work vessel. The model begins to list when an unbalanced load is applied. It can then either stabilize in an inclined state or continue to overturn, throwing the unbalanced load midway, and finally stabilizing in the inverted position. In a mid-air experiment, this correlation was observed for two motion scenarios: pendulum and rotational motion. The two motions were reproduced by changing the mass of the load. The experimental results closely match those of analysis performed using the Runge-Kutta method. In an experiment in a water tank, the change in the mass of the load applied to the model hull and the effect of buoyancy were considered for analysis. Both experimental results and analytic results exhibited the same tendency for overturning. The validity of our analytical method using pendulum theory was confirmed by the consistency between these relationships.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钟摆理论在矩形船体倾覆模型中的应用
本文报道了应用摆理论确定矩形船体模型倾覆可能性的实验研究。该模型不是自航船的船体,而是用作非自航工作船的浮筒。当应用不平衡负载时,模型开始列出。然后,它可以稳定在倾斜状态或继续翻转,中途抛出不平衡负载,最终稳定在倒立位置。在一个半空中实验中,这种相关性在两种运动情况下被观察到:摆和旋转运动。这两种运动是通过改变负载的质量来重现的。实验结果与龙格-库塔法的分析结果吻合较好。在水箱试验中,考虑了模型船体所受载荷质量的变化和浮力的影响进行了分析。实验结果和分析结果均表现出相同的推翻倾向。这些关系的一致性证实了我们用摆理论分析方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Buckling Strength of a Non-Spherical Tank in the Partially Filled Condition Ultimate Strength and Load Response of a Single Side Shell Panel of Bulk Carrier under Longitudinal Thrust and Out-of-plane Pressure Deep Reinforcement Learning Control to Maximize Output Energy for a Wave Energy Converter 『日本船舶海洋工学会論文集』第31 号の正誤訂正について On the Static Stability of Plane Side Ship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1