{"title":"Voronoi-based trajectory optimization for UGV path planning","authors":"E. Magid, Roman Lavrenov, Ilya M. Afanasyev","doi":"10.1109/ICMSC.2017.7959506","DOIUrl":null,"url":null,"abstract":"Optimal path planning in dynamic environments for an unmanned vehicle is a complex task of mobile robotics that requires an integrated approach. This paper describes a path planning algorithm, which allows to build a preliminary motion trajectory using global information about environment, and then dynamically adjust the path in real-time by varying objective function weights. We introduce a set of key parameters for path optimization and the algorithm implementation in MATLAB. The developed algorithm is suitable for fast and robust trajectory tuning to a dynamically changing environment and is capable to provide efficient planning for mobile robots.","PeriodicalId":356055,"journal":{"name":"2017 International Conference on Mechanical, System and Control Engineering (ICMSC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Mechanical, System and Control Engineering (ICMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSC.2017.7959506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Optimal path planning in dynamic environments for an unmanned vehicle is a complex task of mobile robotics that requires an integrated approach. This paper describes a path planning algorithm, which allows to build a preliminary motion trajectory using global information about environment, and then dynamically adjust the path in real-time by varying objective function weights. We introduce a set of key parameters for path optimization and the algorithm implementation in MATLAB. The developed algorithm is suitable for fast and robust trajectory tuning to a dynamically changing environment and is capable to provide efficient planning for mobile robots.