Transforming RDB with BLOB fields to MongoDB

Ahmed Ibrahim, M. Youssef, E. Fakharany
{"title":"Transforming RDB with BLOB fields to MongoDB","authors":"Ahmed Ibrahim, M. Youssef, E. Fakharany","doi":"10.1109/IACS.2017.7921988","DOIUrl":null,"url":null,"abstract":"Recently the No-SQL databases has been popularly used in the mobile and web applications. There are several types of No-SQL databases such as columnar, key-value, graph databases and finally the document store database which is efficient and has more dynamic queries than the normal RDBMS. This paper proposes an automatic method to map the data from the relational database to document store database (MONGODB). This is true for both structured and unstructured data such as word document files. The proposed method also has the capability of extracting the keywords from Blobs “Binary Large Object” Stored in relational databases to be mapped inside the MONGODB. The results show a complexity of order n where n is the number of records processed when it comes to the performance in creating the output from mapping the relational database to document store database for both types of data.","PeriodicalId":180504,"journal":{"name":"2017 8th International Conference on Information and Communication Systems (ICICS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACS.2017.7921988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently the No-SQL databases has been popularly used in the mobile and web applications. There are several types of No-SQL databases such as columnar, key-value, graph databases and finally the document store database which is efficient and has more dynamic queries than the normal RDBMS. This paper proposes an automatic method to map the data from the relational database to document store database (MONGODB). This is true for both structured and unstructured data such as word document files. The proposed method also has the capability of extracting the keywords from Blobs “Binary Large Object” Stored in relational databases to be mapped inside the MONGODB. The results show a complexity of order n where n is the number of records processed when it comes to the performance in creating the output from mapping the relational database to document store database for both types of data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将带有BLOB字段的RDB转换为MongoDB
近年来,No-SQL数据库在移动和web应用中得到了广泛的应用。有几种类型的No-SQL数据库,如列式数据库、键值数据库、图形数据库和文档存储数据库,它比普通的RDBMS效率高,具有更多的动态查询。本文提出了一种将关系数据库中的数据自动映射到文档存储数据库(MONGODB)的方法。对于结构化和非结构化数据(如word文档文件)都是如此。该方法还具有从存储在关系数据库中的Blobs“Binary Large Object”中提取关键字并映射到MONGODB中的能力。结果显示复杂度为n阶,其中n是在为两种类型的数据创建从关系数据库映射到文档存储数据库的输出时处理的记录数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using behaviour-driven development with hardware-software co-design for autonomous load management Efficient 3D placement of a UAV using particle swarm optimization A brain friendly tool to facilitate research-teaching nexus: Mind maps HidroMORE 2: An optimized and parallel version of HidroMORE Comparative analysis of MCDM methods for product aspect ranking: TOPSIS and VIKOR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1