Automatic path planning for autonomous underwater vehicles based on an adaptive differential evolution

Chuan-Bin Zhang, Yue-jiao Gong, Jingjing Li, Ying Lin
{"title":"Automatic path planning for autonomous underwater vehicles based on an adaptive differential evolution","authors":"Chuan-Bin Zhang, Yue-jiao Gong, Jingjing Li, Ying Lin","doi":"10.1145/2576768.2598267","DOIUrl":null,"url":null,"abstract":"This paper proposes a path planner for autonomous underwater vehicles (AUVs) in 3-D underwater space. We simulate an underwater space with rugged seabed and suspending obstacles, which is close to real world. In the proposed representation scheme, the problem space is decomposed into parallel subspaces and each subspace is described by a grid method. The paths of AUVs are simplified as a set of successive points in the problem space. By jointing these waypoints, the entire path of the AUV is obtained. A cost function with penalty method takes into account the length, energy consumption, safety and curvature constraints of AUVs. It is applied to evaluate the quality of paths. Differential evolution (DE) algorithm is used as a black-box optimization tool to provide optimal solutions for the path planning. In addition, we adaptively adjust the parameters of DE according to population distribution and the blockage of parallel subspaces so as to improve its performance. Experiments are conducted on 6 different scenarios. The results validate that the proposed algorithm is effective for improving solution quality and avoiding premature convergence.","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper proposes a path planner for autonomous underwater vehicles (AUVs) in 3-D underwater space. We simulate an underwater space with rugged seabed and suspending obstacles, which is close to real world. In the proposed representation scheme, the problem space is decomposed into parallel subspaces and each subspace is described by a grid method. The paths of AUVs are simplified as a set of successive points in the problem space. By jointing these waypoints, the entire path of the AUV is obtained. A cost function with penalty method takes into account the length, energy consumption, safety and curvature constraints of AUVs. It is applied to evaluate the quality of paths. Differential evolution (DE) algorithm is used as a black-box optimization tool to provide optimal solutions for the path planning. In addition, we adaptively adjust the parameters of DE according to population distribution and the blockage of parallel subspaces so as to improve its performance. Experiments are conducted on 6 different scenarios. The results validate that the proposed algorithm is effective for improving solution quality and avoiding premature convergence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应差分进化的自主水下航行器自动路径规划
提出了一种用于自主水下航行器(auv)在三维水下空间中的路径规划方法。我们模拟了一个水下空间,有崎岖的海底和悬浮的障碍物,接近现实世界。在该表示方案中,将问题空间分解为多个并行子空间,并用网格方法描述每个子空间。将auv的路径简化为问题空间中连续点的集合。通过连接这些路径点,可以得到AUV的整个路径。考虑了auv的长度、能耗、安全性和曲率约束,提出了一种代价函数惩罚法。它被用于评价路径的质量。采用差分进化算法作为黑盒优化工具,为路径规划提供最优解。此外,我们还根据种群分布和平行子空间阻塞情况自适应调整DE的参数,以提高DE的性能。实验在6种不同的场景下进行。结果表明,该算法在提高解质量和避免过早收敛方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-cornered coevolution learning classifier systems for classification tasks Runtime analysis to compare best-improvement and first-improvement in memetic algorithms Clonal selection based fuzzy C-means algorithm for clustering SPSO 2011: analysis of stability; local convergence; and rotation sensitivity GPU-accelerated evolutionary design of the complete exchange communication on wormhole networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1