It's About Time: On Optimal Virtual Network Embeddings under Temporal Flexibilities

Matthias Rost, S. Schmid, A. Feldmann
{"title":"It's About Time: On Optimal Virtual Network Embeddings under Temporal Flexibilities","authors":"Matthias Rost, S. Schmid, A. Feldmann","doi":"10.1109/IPDPS.2014.14","DOIUrl":null,"url":null,"abstract":"Distributed applications often require high-performance networks with strict connectivity guarantees. For instance, many cloud applications suffer from today's variations of the intra-cloud bandwidth, which leads to poor and unpredictable application performance. Accordingly, we witness a trend towards virtual networks (VNets) which can provide resource isolation. Interestingly, while the problem of where to embed a VNet is fairly well-understood today, much less is known about when to optimally allocate a VNet. This however is important, as the requirements specified for a VNet do not have to be static, but can vary over time and even include certain temporal flexibilities. This paper initiates the study of the temporal VNet embedding problem (TVNEP). We propose a continuous-time mathematical programming approach to solve the TVNEP, and present and compare different algorithms. Based on these insights, we present the CSM-Model which incorporates both symmetry and state-space reductions to significantly speed up the process of computing exact solutions to the TVNEP. Based on the CSM-Model, we derive a greedy algorithm OGA to compute fast approximate solutions. In an extensive computational evaluation, we show that despite the hardness of the TVNEP, the CSM-Model is sufficiently powerful to solve moderately sized instances to optimality within one hour and under different objective functions (such as maximizing the number of embeddable VNets). We also show that the greedy algorithm exploits flexibilities well and yields good solutions. More generally, our results suggest that already little time flexibilities can improve the overall system performance significantly.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Distributed applications often require high-performance networks with strict connectivity guarantees. For instance, many cloud applications suffer from today's variations of the intra-cloud bandwidth, which leads to poor and unpredictable application performance. Accordingly, we witness a trend towards virtual networks (VNets) which can provide resource isolation. Interestingly, while the problem of where to embed a VNet is fairly well-understood today, much less is known about when to optimally allocate a VNet. This however is important, as the requirements specified for a VNet do not have to be static, but can vary over time and even include certain temporal flexibilities. This paper initiates the study of the temporal VNet embedding problem (TVNEP). We propose a continuous-time mathematical programming approach to solve the TVNEP, and present and compare different algorithms. Based on these insights, we present the CSM-Model which incorporates both symmetry and state-space reductions to significantly speed up the process of computing exact solutions to the TVNEP. Based on the CSM-Model, we derive a greedy algorithm OGA to compute fast approximate solutions. In an extensive computational evaluation, we show that despite the hardness of the TVNEP, the CSM-Model is sufficiently powerful to solve moderately sized instances to optimality within one hour and under different objective functions (such as maximizing the number of embeddable VNets). We also show that the greedy algorithm exploits flexibilities well and yields good solutions. More generally, our results suggest that already little time flexibilities can improve the overall system performance significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间的问题:时间灵活性下的最优虚拟网络嵌入
分布式应用程序通常需要具有严格连接保证的高性能网络。例如,许多云应用程序受到当今云内带宽变化的影响,这导致应用程序性能差且不可预测。因此,我们看到了一种趋势,即虚拟网络(VNets)可以提供资源隔离。有趣的是,虽然在哪里嵌入VNet的问题在今天已经得到了很好的理解,但对于何时最佳地分配VNet却知之甚少。然而,这一点很重要,因为为VNet指定的需求不一定是静态的,而是可以随时间变化,甚至包括某些时间灵活性。本文首先研究了时态VNet嵌入问题(TVNEP)。我们提出了一种求解TVNEP的连续时间数学规划方法,并对不同的算法进行了比较。基于这些见解,我们提出了包含对称性和状态空间约简的csm模型,以显着加快计算TVNEP精确解的过程。在csm模型的基础上,提出了一种快速求解近似解的贪心算法OGA。在广泛的计算评估中,我们表明,尽管TVNEP很困难,但cms - model足够强大,可以在不同的目标函数(如最大化可嵌入vnet的数量)下,在一小时内解决中等规模的实例的最优性。结果表明,贪心算法充分利用了算法的灵活性,得到了较好的解。更一般地说,我们的结果表明,很少的时间灵活性可以显著提高整个系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving the Performance of CA-GMRES on Multicores with Multiple GPUs Multi-resource Real-Time Reader/Writer Locks for Multiprocessors Energy-Efficient Time-Division Multiplexed Hybrid-Switched NoC for Heterogeneous Multicore Systems Scaling Irregular Applications through Data Aggregation and Software Multithreading Heterogeneity-Aware Workload Placement and Migration in Distributed Sustainable Datacenters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1